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Abstract 
 
Spermatogenesis is an extraordinary complex process. The differentiation of 

spermatogonia into spermatozoa requires the participation of several cell types, 
hormones, paracrine factors, genes and epigenetic regulators. Recent researches in 
animals and humans have furthered our understanding of the male gamete 
differentiation, and led to clinical tools for the better management of male infertility. 
There is still much to be learned about this intricate process. In this review, the 
critical steps of human spermatogenesis are discussed together with its main 
affecting factors. 
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1 Introduction 
Spermatogenesis encompasses a complex network of processes that occur in 

the seminiferous tubules (STs) and culminates in the production of the mature male 
gamete. The processes are:  proliferation of spermatogonia; spermatogonial 
differentiation into spermatocytes; meiotic division of spermatocytes producing 
spermatids; maturation of round spermatids; and the release of highly specialized 
mature spermatozoa into the testicular tubule lumen[1]. 
 The entire spermatogenic process is thought to require approximately 74 
days[2, 3], but a more recent study in normal men concluded that the total time to 
produce ejaculated sperm might vary between 42 to 76 days[4]. The estimated daily 
sperm production per man ranges from 150 to 275 million spermatozoa[3, 5].  

Several testicular structures and cells play important roles during 
spermatogenesis, while an ample array of factors can influence its quality and 
quantity. In this article, we review the current literature regarding the main actors 
of human spermatogenesis. 
 
 2 Structures and cells 
 

2.1 Seminiferous tubules 
 The average volume of an adult human testis is 30mL and its parenchyma is 
divided in 200 – 300 lobules by septations arising from the tunica albuginea.  Each 
of these lobules contains one to three loops of STs, each one measuring 70-80cm in 
length when stretched, and with a total length of 250 meters per testis [1, 6]. The 
STs are the functional unit of the testis and occupy two-thirds of the organ’s volume. 
They consist of a basement membrane, Sertoli cells (SCs), and germ cells at varying 
stages of maturation. So far, 13 types of human germ cells (GCs) have been 
identified. Classified in ascending order of maturation, they are the dark type A 
spermatogonia, the pale type A spermatogonia, the type B spermatogonia, the 
preleptotene, leptotene, zygotene, and pachytene primary spermatocytes, the 
secondary spermatocytes, and the Sa, Sb, Sc, Sd1, and Sd2 spermatids[7].  
 A peritubular tissue surrounds the ST and is composed of layers of myoid 
cells, fibrocyte-like adventitial cells, and collagen matrix. Together with SCs, this 
peritubular tissue forms the blood testis barrier (BTB)[8].  
 

2.2 Peritubular myoid cells 
 Peritubular myoid cells (PTCs) are large, flat mesenchymal cells with some 
fibroblast-like and smooth muscle cell-like characteristics[8]. They are arranged in 
discontinuous cell layers, providing support for the STs. One of their main functions 
is the propulsion of the testicular fluid containing immotile spermatozoa towards 
the rete testis, using contractile filaments of actin and myosin[9, 10]. 
 PTCs are also implicated in paracrine regulation of SCs functions. PModS 
(peritubular modifies Sertoli) is a PTC-derived molecule that modulates the 
secretion of transferrin, inhibin and androgen-binding protein by SCs. Other factors 
produced by PTCs that regulate SCs function are IGF-1, bFGF and a number of 
interleukins. PTCs also take part in the production and maintenance of the blood 



testis barrier trough the secretion of fibronectin, collagens, proteoglycans and 
entactin[11, 12].   
 Several factors regulate PTCs activities. Studies using mice with the androgen 
receptor (AR) gene deleted in PTCs showed that androgens are important 
modulators of PTCs functions[13, 14]. In humans, AR are also found in PTCs, but to a 
lesser extent than in SCs. the clinical significance of androgen signaling in human 
PTCs is still unclear [15]. PTCs contractile function is regulated by angiotensin II 
acting via type 1 angiotensin receptor (ATR1) and oxytocin[10, 16, 17]. TNF-a 
strongly upregulates the production of proinflammatory interleukins by PTCs and 
might be related to the peritubular wall remodeling observed in some infertility 
patients[16, 18, 19].  
 

2.3 Leydig Cells 
 Leydig cells (LCs) are located in clusters usually found in strategic positions 
between blood vessels and ST[20, 21]. They are polygonal in shape and exhibit 
ultrastructural features that are consistent with their function as the primary source 
of testosterone (T) in males. 
 LCs are thought to differentiate from fibroblast-like or mesenchymal cells in 
the testis interstitium[22]. In humans, their differentiation occurs in three waves, 
matching the also triphasic pattern of T production during development[23]. As a 
downstream event of sex-determining region (SRY) gene signaling, the first wave 
occurs between 8-18 weeks of gestation and is responsible for the male secondary 
sexual differentiation[24].  

The second wave occurs in the first 2-3 months after birth in response to a 
concurrent LH surge. This wave is responsible for the hormonal imprinting of 
hypothalamus, liver, and prostate [1, 25]. The third wave is triggered by the 
maturation of the hypothalamic pituitary gonadal (HPG) axis during puberty. 
Originated from precursors cells and regressed neonatal LCs, adult LCs persist 
active throughout adulthood[23, 26].  
 Testosterone is the main LCs product, and the testes secret between 3-10 
mg/day of T, accounting for more than 95% of total circulating T in post-pubertal 
men. Testosterone is synthesized from cholesterol in a complex process that 
involves multiple cytoplasmic and mitochondrial enzymes and transporters[27, 28]. 
The rate-determining step is the cholesterol transport from the outer mitochondrial 
membrane to the inner mitochondrial membrane by two particular molecules, TSPO 
(translocator protein), which acts as a channel[29], and the steroidogenic acute 
regulatory protein (StAR) whose mechanism of action is still unknown[30-32]. 
 Testosterone produced by LCs may be stored in the intratesticular 
compartment or released into the systemic circulation. In humans, intratesticular 
testosterone (ITT) levels are 100-fold higher than serum levels[33, 34]. This may be 
due to local T production by Leydig cells combined with a countercurrent exchange 
mechanism in the pampiniform plexus[35]. Clinical studies on men using a T-based 
contraceptive regimen revealed that high ITT levels are necessary to support 
normal spermatogenesis[36] and that administration of hCG was able to bring ITT 
back to baseline levels in those men[37]. In addition, ITT optimization through the 
use of exogenous gonadotropins resulted in improved spermatogenesis in men with 



non-obstructive azoospermia (NOA)[38]. There is no explanation for the need for 
such high levels of ITT in order to maintaining normal sperm production. In fact, 
much of the ITT might not be available to bind AR, since it is bound to androgen-
binding protein, therefore, part of the ITT content might function just as a T 
reserve[39]. 
 LCs are also the predominant testicular source of estrogens after 
puberty[40]. Estradiol is the main testicular estrogen and is metabolized from T by 
the microsomal P450 aromatase. This enzyme is responsible for maintaining the 
testosterone/estradiol ratio, and its activity is altered in some men with 
spermatogenesis failure[41]. Even though aromatase is mainly localized in LCs, it 
can be also found in SCs and GCs[42], the latter may be an estrogen source as 
important as LCs[43]. This widespread expression of aromatase highlights the 
importance of estrogens for spermatogenesis. Very high levels of intratesticular 
estrogens found in humans give even more support to this idea[44]. 

Other factors synthesized by LCs have been shown to influence human 
testicular function. Insulin-like factor 3 (INSL3) is a peptide produced almost 
exclusively by the LCs[45, 46]. Acting via the relaxin-family peptide receptor 2 
(RXFP2), INSL3 mediates the migration of the testis to the scrotum[47, 48]. Its role 
in the adult human testis remains unknown, but a paracrine action on GCs is 
plausible. Importantly, INSL3 concentrations may reflect the functional status of 
LCS, possibly better than T concentrations[49, 50]. Oxytocin is also produced by 
human LCs and acts on the PTCs, increasing STs contractions. Oxytocin may also act 
in an autocrine way, stimulating steroidogenesis[17, 51].  
 The steroidogenic activity of LCs is driven by a series of hormonal and non-
hormonal factors. Luteinizing hormone (LH) is the most important of them and acts 
by binding to high-affinity LH/HCG receptors on the plasma membrane. The binding 
of LH to LH/HCG receptors starts a chain of acute and trophic events. The acute 
events are mediated by coupled G protein - cAMP mechanism and include the 
synthesis of StAR and cytochrome P450 enzymes, leading to an immediate increase 
in the T and estradiol production within 24 - 72hrs[52, 53]. In contrast, the trophic 
effect is the inhibition of LCs apoptosis mediated through the ERK1/2 and Akt 
pathways[54, 55]. In addition to the hypothalamic/pituitary negative feedback, 
testosterone also regulates LCs function through an ultrashort loop negative 
feedback[56].  

Other factors, such as gonadotropin-releasing hormone, melatonin, 
epidermal growth factor, insulin-like growth factor 1, atrial natriuretic peptide, 
ghrelin, and neurotransmitters, such as the gamma-aminobutyric acid, have also 
been reported to affect human LCs activity, but with less robust data[57-65]. 
 

2.4 Sertoli cells 
Sertoli cells are considered the indispensable conductors of spermatogenesis 

and occupy 17–20% of the STs epithelium in an adult man[66]. They exhibit 
irregular shape and polarized alignment, with the base resting over the basal 
membrane and the apex pointing to the STs lumen[67, 68]. Another distinguished 
characteristic is the prominent nucleoli, which are readily identified in testis biopsy 
slides.  



Their morphology is constantly changing, with vast cytoplasmic 
ramifications resembling tree branches, which involve GCs and assist with their 
migration towards the tubule lumen during spermatogenesis. A single SC can 
support up to 30–50 GCs at different stages of development[69, 70]. The framework 
for this intricate structure is provided by a complex cytoskeleton composed of actin 
filaments, tubulobulbar complexes, ectoplasmic specializations, intermediate 
filaments and microtubules, each one with its own ultrastructure and function.  

Sertoli cells play a central role in the embryology of the testis. Until the sixth 
week of gestation, the human primordial gonad is fully bipotential, and the 
differentiation of SCs from progenitor cells of mesenchymal origin is the mark of 
male gonadal development[71, 72]. The presence of the Y-chromosome, or, more 
specifically, its SRY gene directs this unfinished organ towards testicular 
differentiation[73]. The product of SRY gene is a DNA-binding protein that 
upregulates a complex network of transcription factors, whose net effect is the 
differentiation of SCs. Other testicular cell types do not express SRY, and their male 
fate is directed by molecular signals arising from SCs[74, 75]. Shortly after 
differentiation, SCs start to produce anti-Müllerian hormone (AMH), which induces 
regression of the Müllerian ducts and precludes the development of female internal 
genitalia[76, 77]. SCs continue to secrete AMH throughout development and into 
adulthood, but the function of AMH after testicular differentiation remains unclear, 
with some authors suggesting a role in non-gonadal development[78, 79].  

Androgen-binding protein (ABP) is another secretory product of SCs. It is a 
carrier protein that binds to T and dihydrotestosterone (DHT) with high affinity. 
ABP may regulate the bioavailability of androgens in the extracellular space of the 
testis and epididymis, maintaining a high concentration of these molecules in these 
organs. Others advocate that ABP also controls spermatogenesis and sperm 
maturation, protecting androgens from metabolism and facilitating androgen 
uptake in the male reproductive tract[80-83]. Transferrin, vitamin transporters, 
lactate, acetate, extracellular matrix components, glial cell-derived neurotrophic 
factor (GNDF), TGF-a, TGF-b and interleukins are other SC-derived products that 
seem to contribute to the microenvironment in which the GCs maturate[84-93].  
  Also produced by SCs, inhibin B is a glycoprotein hormone that regulates the 
production and secretion of FSH in the anterior pituitary gland, in a classic negative 
feedback loop[94]. Inhibin B is composed of two subunits, α and β. The α subunit is 
located predominantly in the SCs, while the β subunit is located mainly in the GCs, 
suggesting that an interaction between SCs and GCs is necessary for inhibin B 
production, at least after puberty[95-97]. Furthermore, inhibin B may be a 
paracrine and autocrine regulator of LCs and SCs functions[98-100].  

Sertoli cell also act as macrophages, using phagocytosis to clean any 
degenerating GCs or residual bodies from spermatids. This is a critical function, 
because a considerable proportion of GCs are discarded during spermatogenesis, 
and the presence of these dead cells into the ST lumen could lead to the release of 
noxious contents that negatively impact sperm production[101-103].  
 Regulation of SCs activities is achieved by hormonal, non-hormonal and 
paracrine factors. The most important regulator of SCs is the follicle-stimulating 
hormone (FSH). Produced by the pituitary gland under the stimulus of 



gonadotropin-releasing hormone (GnRH), FSH mediates the connection between the 
brain and SCs. Acting via specific G-coupled receptors, FSH activates several 
pathways, stimulating virtually all functions related to spermatogenesis. Despite the 
important role played by FSH, the hormone is not considered essential to 
spermatogenesis. Clinical data from men lacking FSH production or with FSH 
receptor mutation have revealed that spermatogenesis is heavily affected but not 
extinguished in these cases; a finding that could be explained in part by the 
discovery that the FSH receptor has some low level of constitutive activity[104-
107].  

In contrast, androgen signaling is indispensable to normal spermatogenesis, 
especially for meiotic progression and spermatid maturation, and SCs are the main 
mediator of androgen action in spermatogenesis[15]. The AR is found in SCs and 
moves to the nucleus to stimulate transcription when combined to its ligands (T or 
dihydrotestosterone). Unfortunately, the exact genetic mechanism by which 
androgens influence spermatogenesis is still unclear because few consistent target 
genes have been identified[108-111]. Therefore, secondary signaling pathways, 
such as Ca2+-dependent and MAP kinase pathways, have been proposed, but there 
is also paucity of data about them[105, 112, 113].  

Insulin is another factor that modulates SCs activity, specifically, the 
carbohydrate metabolism (i.e. production of lactate). Insulin-deprived SCs were 
shown to have decreased lactate production, and, since lactate is the main energy 
source for some GCs, this effect could explain part of the deleterious influence of 
type I diabetes over spermatogenesis. Other substances, such as DHT, estradiol, 
melatonin, bFGF and interleukins, have been implicated in the regulation of SCs 
metabolism, but the their clinical significance is still unknown[87, 89, 114, 115]. As 
described earlier, PModS is a molecule secreted by PTCs that modulates the 
secretion of transferrin, inhibin B and androgen-binding protein by SCs. It has been 
shown to have more effect on SCs function than any other known regulatory factor, 
including FSH[12, 116].  
 

2.5Germ Cells 
 Germ cells comprise a family of cells whose sole purpose is to become 
spermatozoa, and thus, to transmit genetic and epigenetic information across 
generations. They are the only human cell type capable of meiosis. Located within 
the STs, GCs are distributed in a highly organized manner, with less matured cells 
occupying the basal compartment and progressing to the adluminal compartment as 
they mature[3, 7]. The primordial GCs arise from extra-embryonic tissues 
surrounding the yolk sac. Between 3 and 5 weeks of development, they migrate to 
the gonadal ridge, where, directed by SCs factors, they differentiate into gonocytes. 

 The gonocytes enter in arrest in the G0 phase and stay mitotically inactive 
until after birth. Factors, such as the stem cell factor (SCF), stromal cell derived 
factor 1 (SDF-1), activator protein-2γ (AP-2γ), growth and differentiation factor 3 
(GDF3), estradiol, retinoic acid, and methylation of DNA, appear to have an 
important role during the primordial GCs and gonocyte differentiations, and may be 
the source of some infertility causes and testicular tumors[117-127]. Between birth 
and 6 months, the gonocytes will further differentiate into spermatogonia (SPG), 



which stay quiescent until the age of 5-7 years, when they increase in number via 
mitosis. Starting with puberty, and in parallel with the proliferation process, SPG 
begin the differentiation process towards spermatozoa[128, 129].  

Spermatogonia are the diploid progenitors of all other GCs types, and have 
the dual responsibility of undergoing meiosis to produce the male gamete, and 
mitosis to self-renew, maintaining the continuous production of spermatozoa 
throughout man’s life. Located in the basal compartment of the STs, and in close 
contact with SCs, they have an ovoid nucleus and a dense cytoplasm containing a 
small Golgi apparatus, few mitochondria, and many free ribosomes. SPG are divided 
in 3 subtypes based on their heterochromatin content: A dark; A pale; and B 
SPG[130, 131]. 

In the most accepted model, the stem GCs are the A dark and A pale SPG. The 
A dark SPG are the quiescent or reserve stem GCs, while the A pale SPG are the 
active stem GCs. The A pale SPG proliferate to either self-renew or to produce B SPG, 
which go through one mitotic division before initiating meiosis[132-134]. There is 
some debate about the pattern of A pale SPG division, but, using any of the current 
models, 8 preleptotene spermatocytes are produced from the original pair of A pale 
SPG[132, 135].  

The decision whether the SPG will self-renew, differentiate or become 
apoptotic is mainly influenced by SC-derived factors. GNDF has been demonstrated 
to promote spermatogonial self-renew. In contrast, SCF, bone morphogenetic 
protein 4, retinoic acid and Notch1/Jagged2 signaling system induce differentiation. 
Several micro-RNAs are also implicated in the modulation of spermatogonial 
fate[93, 136-138]. Apoptosis is the mechanism used by SCs to control the number of 
GCs, keeping the proportion SCs/GCs constant. In fact, around 50-70% of developing 
GCs are discarded during spermatogenesis. The signal to GCs to enter into apoptosis 
is given by SCs trough the FaS/FaSL system, and modulated by Bcl-2, Bax and TNF-
[139-142]. The transcription factor nuclear factor κB (NF-kB) is likewise 
important in this process, but instead of acting directly on GCs, it induces 
transcription of SCs factors involved in the regulation of GCs death. Given their 
importance, any disturbance in theses mechanisms could affect the male fertility 
potential[143, 144]. 

Germ cells develop in consistent groupings called cellular associations. In 
humans, a system with 6 cellular associations, based on the morphological changes 
of the cellular nucleus after staining with hematoxylin-eosin, has been used since 
1963[7]. Each cellular association is considered a stage in the spermatogenic cycle. 
Men with low sperm production might show atypical cellular associations, due to 
missing GCs or intermingling of associations[3, 5, 145]. Recently, a novel 12-stage 
cycle system was proposed using changes in shape and size of the acrosome made 
visible by immunohistochemical detection of the acrosin protein[146]. This system 
is similar to other ones described in non-primate mammals. In addition, there is 
some debate about the spatial organization of cellular associations. Animal models 
have shown that spermatogenesis is organized in waves throughout the STs. Early 
human studies failed to find the same pattern, and described human 
spermatogenesis as a chaotic process[3]. However, subsequent studies using 
computer modeling to map the distribution of primary spermatocytes proposed that 



human spermatogenesis was organized in helical waves[147, 148]. Recently, 3D 
maps of cellular associations showed that their arrangement in humans was a 

random event[149].  
Failure of GCs to develop further than the spermatogonial stage leads to 

azoospermia and a histological pattern called Sertoli-cell–only syndrome (SCO). SCO 
can be characterized by complete absence of SPG (SCO type 1), or by presence of 
rare foci of GCs with residual spermatogenesis (SCO type2). SCO type 1 is caused by 
disturbance of the migration of the primordial GCs from the yolk sac to the 
seminiferous cord, and exhibits intact basal membrane with numerous SCs in a very 
good morphological shape, but no GCs can be found. SCO type 2 is due to an insult 
occurring later on, allowing the persistence of some SPG, but also damaging other 
components of the STs. Despite the great reduction of the number of SPG and the 
presence of alterations in the other components of STs (i.e. SCs and basal 
membrane), sperm may still be retrieved using testicular microdissection 
techniques[150-152]. 

New promising technologies are been developed to help the identification of 
STs with undisturbed spermatogenesis in men with NOA. Multiphoton microscopy 
illuminates tissues with a near-infrared laser, which excites auto-fluorescence. This 
technique enables real-time imaging of tissue in-vivo without labels, providing high-
resolution images that can be obtained at clinically useful depths with minimal 
damage to the tissue. The images can be used to differentiate between normal and 
abnormal spermatogenesis in human testis[153]. Other technique, Raman 
spectroscopy (RS), is a noninvasive and label-free optical technique that utilizes the 
molecular fingerprint of materials and transforms their biochemical information 
into a characteristic Raman spectrum. RS has been tested in animal and human 
models and has shown capability to distinguish seminiferous tubules with 
spermatogenesis from SCO tubules[154]. These technologies deserve further 
investigation into their clinical application to improve the sperm retrieval rates in 
patients with NOA. 

 
Primary spermatocytes (PSCs) are produced by mitotic division of type B 

SPG and mark the end of the proliferative portion of spermatogenesis. They are the 
first GCs to cross the BTB to the adluminal compartment, where they become 
immunologically isolated and proceed to meiosis. PSCs are subclassified according 
to the stages of prophase 1 (i.e. preleptotene, leptotene, zygotene, and 
pachytene)[7].  

The DNA recombination process occurs during the pachytene stage and is 
crucial to human evolution, therefore, quality control of meiosis 1 is very strict, with 
checkpoints during the pachytene and the transition metaphase1/anaphase1. Ten 
percent of men with NOA show a higher rate of recombination failure[155], while up 
to 45% of men whose partner suffer from recurrent pregnancy loss, and who have 
normal sperm density, motility, and morphology have increased sperm 
aneuploidy[156]. These findings could explain many cases of “idiopathic infertility”. 
Such infertile men might be at a higher risk of producing chromosomally abnormal 
offspring and should have genetic counseling[155, 157]. 



Another important player during meiotic recombination was recently 
identified. TEX11 is a germ cell-specific gene located in the X chromosome and 
encodes a protein that regulates homologous chromosome synapses and double-
strand DNA break repair[158, 159]. TEX11 mutations were found in 2.4% of men 
with “idiopathic infertility” and were associated to spermatocyte apoptosis, 
maturation arrest and azoospermia[160].  

After meiosis 1, two secondary spermatocytes are formed, each one with 
haploid number of chromosomes, but with 2n content of DNA. During meiosis 2, a 
single secondary spermatocyte is turned into two haploid/n round Sa 
spermatids[161, 162]. 

Maturation arrest (MA) during meiosis (early maturation arrest) is found in 
approximately 10% of the men with NOA. The histopathologic features of early MA 
include reduced tubule diameter and number of GCs, degenerating spermatocytes, 
and cellular debris[163]. Since meiosis 1 is more complex and has more quality 
control checkpoints than meiosis 2, MA at the stage of PSCs is more often found. 
Men with focal early MA may have some STs with normal spermatogenesis, and the 
overall surgical sperm retrieval rate in these cases ranges from 20-40% with 
microsurgical testicular sperm extraction (microTESE)[164-166].  

As previously described, an important characteristic of spermatocytes and 
spermatids is their reliance on lactate as their principal energy source[87]. Glucose 
is taken up by SCs via the specific glucose transporter GLUT1 and then processed 
glycolytically into lactate, which is then transferred to GCs via monocarboxylate 
transporters. FSH, androgens, insulin and some paracrine factors stimulate this 
process, and disruptions can cause male infertility[167, 168]. 

Spermiogenesis is the maturation process by which one round Sa spermatid 
becomes one spermatozoon. During this stage, no more cellular divisions occurs, 
and a series of cytoplasmic and nuclear changes takes place. The acrosome is 
formed from the Golgi apparatus with participation of a cytoskeletal structure called 
perinuclear theca[169, 170]. Disturbances during acrosome development could lead 
to dramatic alteration in the head shape, called globozoospermia, a rare infertility 
condition that is difficult to manage. Globozoospermia is characterized by round-
headed spermatozoa that are unable to penetrate and activate oocytes. Failure of 
inner nuclear proteins, mainly the DPY19L2 protein, to anchor the acrosome to the 
nucleus is the principal mechnism behind this pathology [171, 172]. DPY19L2 gene 
deletions are considered the most commom cause of globozoospermia, while 
SPATA16 and PICK1 mutations are also associated to this phenotype[173]. The 
outcomes of conventional intracytoplasmic sperm injection (ICSI) are poor in these 
men, since their sperm cannot active the oocyte. ICSI coupled with assited oocyte 
activation has resulted in live births[174].  

The nucleus becomes more condensed and migrates to an eccentric position. 
Protamines replace 85% of the nuclear histone content and DNA is neatly packed 
around them in supercoiled structures named toroids, increasing DNA protection 
and becoming, in most part, transcriptionaly silent. In this setting of highly 
condensed DNA, protein synthesis relies on RNA stored in the cromatoid body. 
Some of these RNAs have been identified as non-coding RNAs, which have a role in 



gene expression regulation. Poor DNA packing results in DNA fragmentation and 
decreases the fertility potential, impacting negatively on IVF outcomes[175-179]. 

 The sperm tail arises from the centriole, gradually elongating the spermatid 
shape, and is formed of microtubules disposed in a 2 + 9 formation. In addition to 
the microtubules, other two structures, the outer dense fibers and the fibrous 
sheath, are organized and provide additional support and flagellar motion 
regulation. Mitochondria increase in number and gather around the tail basis, 
forming the midpiece [180-182]. In order to maximize spermatozoa motility, the 
excess of cytoplasm containing the remnants of Golgi apparatus and other 
organelles is removed, forming the residual body, which is phagocytized by 
SCs[183].  

Spermiogenesis may be interrupted at any stage of spermatid development. 
When the arrest occurs at the early spermatid phase (dark round nuclei), the 
condition is called late maturation arrest, and when condensed, oval spermatids are 
present, it is called hypospermatogenesis (HS)[163]. Late MA seems to be less 
common than early MA, but carries a better chance of sperm retrieval with 
microTESE (50-80%), while hypospermatogenesis is found in up to 60% of men 
with NOA and has the best surgical sperm retrieval rate among all NOA histological 
patterns (80-90%)[163, 184, 185]. 

 
Once the spermatid is fully metamorphosed, it is detached from SCs and released  
into the tubule lumen in a process called spermiation. The details of spermiation in 
humans have yet to be elucidated, but it seems that the detachment of ectoplasmic 
specializations progress from tail to head, and that small tubulobulbar complexes 
maintain the last point of contact. This step is FSH and testosterone-dependent. 
Although defects in spermiation alone have not been found to cause human male 
infertility, they likely do contribute in some cases[104, 186, 187]. 
 

2.6 Blood Testis Barrier 
Due to their high immunogenicity and specific metabolic demands, GCs need 

to be kept in a tightly regulated microenvironment. The BTB is an anatomical and 
functional barrier that divides the seminiferous epithelium in two separate spaces, 
the basal and adluminal compartments, and restricts the paracellular transit of 
substances[188, 189]. In mammalian testes, the most important components of the 
BTB are the cellular junctions between adjacent SCs, such as tight junctions, basal 
ectoplasmic specialization, gap junction, and desmosomes. Peritubular myoid cells 
and endothelial cells play a secondary role[190, 191].  
 The first cells to cross the BTB are the leptotene-PSCs, which migrate to the 
adluminal compartment to finish meiosis. Thus, meiosis initiation may not require 
the special microenvironment[192], but its consummation should occur in the 
adluminal compartment to avoid activation of the immune system by surface 
antigens of haploid GCs. Since GCs in the basal compartment also contain 
autoantigens, the BTB immunologic shielding seems to be reinforced by 
immunosuppressive activity of leukocytes and SCs[85, 193-195].  
 The transport of PSCs to the adluminal compartment, as well as the transport 
of round spermatids to the luminal edge, appears to be mediated by assembly and 



disassembly of cell junctions in an orderly manner to prevent the passage of 
unwanted substances[85, 192, 196]. Furthermore, SCs transporters, such as efflux 
ATP pumps, mediate the flow of molecules, so that SCs are able to provide the 
nutrients needed by GCs, and to remove harmful substances. This mechanism is 
implicated in the resistance shown by some drugs to penetrate the BTB[197, 198]. 
 Whereas several reports and animal models have suggested that the BTB is 
regulated by hormones, cytokines and growth factors, data gathered from the few 
human studies covering this topic are not enough to draw definitive conclusions. 
For example, animal studies have shown that intratesticular T acts as a trophic 
factor, however, in a human study, the suppression of intratesticular T did not 
disturb the BTB integrity. The study of BTB is an evolving field, but more human 
studies are needed. Advances in this area will likely bring us clinical tools applicable 
to humans in the area of contraception, male infertility and oncology[199-202].  

 
3 Factors that directly affect human spermatogenesis 

 
3.1 Obesity 
Obesity has become one of the most studied health problems in the recent 

years. Using a body mass index (BMI) > 30 as the definition for obesity, the WHO 
estimates that 13% of the world’s adult population was obese in 2014[203]. This 
scenario is even worse in the US, where a recent study showed a prevalence of 35% 
in adults[204]. Parallel to that, there is an ongoing debate about the possible 
relationship between the controversial worldwide decline in semen quality and the 
increasing number of obese men[205, 206]. 
 Several studies have shown a negative association between sperm 
concentration/total sperm count and increasing BMI[207-210]. A negative impact 
on sperm morphology, motility, and DNA fragmentation has also been reported 
[211-215]. 
 Several mechanisms have been proposed to explain how obesity could affect 
sperm production. The most studied mechanism is the hyperestrogenism. Levels of 
circulating estrogens are increased in obese men due to the increased peripheral 
conversion of testosterone to estrogens by the aromatase enzyme found in the 
adipose tissue[216, 217]. The excess of estrogens results in inhibition of LH and FSH 
by negative feedback on the hypothalamus and pituitary gland, decreasing T levels 
and the testosterone/estrogen ratio. With low T and FSH levels, spermatogenesis 
becomes defective. This mechanism is evidenced by the low levels of inhibin B in 
obese men[218-220]. Estrogen receptors (ER) have also been described in human 
testis. ER is found in almost all cell types of the interstitium and the STs, ER is 
mainly found in LCs and SCs, and the G protein-coupled estrogen receptor (GPER) is 
present in PTCs, LCs and SCs. These findings imply a direct impact on testicular 
function[221-224]. 
 Other mechanisms involved in the hypoandrogenism of obese patients 
include diminished levels of sex hormone-binding globulin (SHBG), insulin and 
leptin resistance, sleep apnea, and adiponectin deficiency[225-230].  

Factors involved in the pathogenesis of obesity, such as high-calorie diets, 
sedentarism, genetic and epigenetic disorders, may also influence sperm production 



[207, 231, 232]. Furthermore, some bariatric surgeries have been shown to impair 
semen parameters, probably due to malabsorption of vitamins and trace nutrients 
[233-235].  
 

3.2 Diabetes 
Characterized by hyperglycemia due to failure of insulin production and 

action, diabetes mellitus (DM) induces damage to various organs and systems, 
including the testis. Epidemiologic studies have shown that men with type 1 DM 
have significantly fewer offspring than their unaffected siblings[236], and that the 
estimated infertility prevalence in diabetic males ranges from 35% to 51%[237]. 
Despite the conflicting data about the impact of DM on classical sperm 
parameters[238, 239], there is some evidence pointing towards direct testicular 
damage. Diabetic men have increased DNA fragmentation[240, 241], which is 
probably due to oxidative stress originated from increased levels of advanced 
glycation end products, specifically Nε-carboxymethyl-lysine[242-245]. 
 In addition, a recent study reported decreased lactate production by human 
SCs during insulin deprivation. This metabolic mechanism could directly affect 
spermatogenesis, since SCs-derived lactate has an anti-apoptotic effect and is the 
main energy source for spermatocytes and spermatids [114].  
 

3.3 Environmental chemicals 
That exposure to environmental chemicals (ECs) affects spermatogenesis has 

been suspected since the ancient times. Some Roman emperors and patricians had 
reproductive problems likely due to chronic exposure to lead from drinking 
contaminated wine[246, 247]. However, the definitive link between lead exposure 
and male infertility was not established until 1975[248]. 

 Even though data from in vitro and animal studies corroborate the negative 
effects of ECs on the male reproductive tract, human epidemiological studies have 
been somewhat inconclusive.  

There are many pathways by which ECs could disturb spermatogenesis, 
endocrine disruption is the most well known. Phthalates, chemicals used as 
plasticizers, have an anti-androgenic effect, decreasing the T production in LCs by 
activation of peroxisome proliferator-activated receptors (PPARs), as well as 
reduction of TPSO levels[249]. In addition, phthalates can also impair SCs and GCs 
functions[250]. Bisphenol A (BPA), a chemical used to manufacture polycarbonate 
plastics and epoxy resins, is another endocrine disruptor. BPA binds to AR, ERα and 
ERβ, exerting anti-androgenic and anti-estrogenic effects, and exposure to this EC 
has been associated to poor semen parameters[251, 252]. 
 The BTB is likewise a target for ECs. Cadmium, a heavy metal used in the 
manufacture of batteries and pigments, has been shown to cause damage to the 
BTB, disrupting tight junctions and causing spermiation failure[253, 254]. 
Tetrachlorodibenzo-p-dioxin is a chlorinated hydrocarbon formed as a side product 
of herbicides and pesticides synthesis. Dioxin increases the c-Src activity, which 
alters the adhesive function of tight junctions and adherens junction in the BTB[255, 
256]. Not surprisingly, men living in areas with high dioxin contamination have 
impaired semen parameters[257].  



 Alterations in the sperm chromatin structure is linked to some ECs, such as 
lead and ethylene dibromide. Lead is usually used as a pigment in paints and as a 
fuel component[258]. It binds to human protamines during spermiogenesis, altering 
sperm chromatin stability and potentially affecting normal chromatin 
condensation[259]. Ethylene dibromide (EDB) is a lead scavenger used in gasoline 
and was used as a fumigant. Studies with men chronically exposed to EDB showed a 
negative impact on sperm count, morphology and motility[260, 261]. Animal models 
suggests that EDB binds to histones, disturbing DNA packing[262]. 
 Increased oxidative stress is also associated to some ECs. 1,2-Dibromo-3-
chloropropane (DBCP) is a fumigant once used to control nematodes in field crops, 
but is still used in the synthesis of some fire retardants[263]. Men exposed to DBCP 
had decreased sperm count[264]. An in vitro study suggested that DBCP elevates 
ROS in GCs, inducing spermatogonial apoptosis[265]. 
 

3.4 Varicocele 
Varicocele is an abnormal dilation of internal spermatic veins caused by 

incompetent venous valves, leading to reflux and stasis of venous blood. Varicocele 
can be found in 15% of all adult males, in 35% of infertile men and in 70-80% of 
men with secondary infertility[266]. Varicocele is considered a common etiology of 
male infertility, however, the cause-effect relationship between varicocele and 
infertility has not been conclusively established yet. Although studies confirm a 
negative impact of varicocele on fertility, studies of unselected men reveal 
conflicting results[267-270]. Despite the controversy, surgical treatment of infertile 
men with clinical varicoceles has been shown to improve semen parameters, 
pregnancy rates and testosterone levels[271-274]. 
 Several hypotheses have been proposed to explain the potential negative 
effect of varicocele on spermatogenesis. Scrotal hyperthermia caused by venous 
blood stasis is thought to be the primary mechanism. Testicular functions are 
temperature-sensitive, therefore, intratesticular temperature should be kept 2 to 4° 
C lower than the rectal temperature[275]. Heat causes an increased rate of GCs 
apoptosis [276], likely mediated by decreased levels of cold-inducible RNA binding 
protein (Cirp)[277], as well as elevated levels of heat shock proteins[278]. High 
temperatures also impair testicular androgen production via a pathway involving 
increased oxidative stress damage to the LCs[279].  

Recently, studies of the seminal proteome of men with varicoceles have 
highlighted the role of seminal components in the condition’s pathophysiology. 
Adolescents with varicocele and abnormal semen parameters showed high 
expression of semenogelins I and II [280]. Semenogelins inhibit sperm motility and 
prevent premature sperm hyperactivation and capacitation, thus, they may be 
responsible, at last in part, for the decreased sperm motility found in these patients. 
The same group reported increased DNA-directed RNA polymerase III subunit 
(RPC2) levels in adolescents with varicoceles [281]. Since this protein is involved in 
the oxidative cascade, this reinforces the role of oxidative stress in the 
pathophysiology of varicocele. It is important to note that seminal proteome 
analysis has been extensively studied in infertile men with the objective of clarifying 
the importance of seminal components in several male infertility conditions, as well 



as identifying biomarkers that could be used as diagnostic tools. For good reviews, 
refer to[282, 283].  
 Another potential mechanism for testicular function impairment is a 
decreased expression of E-cadherin and alpha-catenin proteins in SCs, with 
subsequent damage to the BTB and autoimmunity[284, 285]. Impaired disposal of 
residual sperm cytoplasm is also proposed as possible mechanism, resulting in 
defective sperm function [286, 287].  
 The histological findings in infertile men with varicocele include 
hypospermatogenesis, maturation arrest, decreased STs diameter, LCs hyperplasia, 
and testicular atrophy [288-290]. The effects on spermatogenesis seem to be 
bilateral, even in cases of unilateral varicocele, but the mechanism by which the 
contralateral testis is affected is unclear[291]. 
 

3.5 Genetic factors 
 Genetic disorders account for 15-30% of male infertility cases and might be 
responsible for the majority of “idiopathic” cases[292, 293]. Since the first reports of 
successful pregnancies after testicular sperm retrieval coupled with 
intracytoplasmic sperm injection of eggs (ICSI)[294], the interest on this field has 
significantly increased as specialists try to gather data that could be useful in the 
management and counseling of these couples. Notwithstanding the great advances 
in genetics over the last two decades, bench-to-bedside translation of this 
knowledge has been slow, hindering the development of diagnostic and therapeutic 
tools for clinical practice. This section will focus on genetic factors affecting human 
spermatogenesis with current, as well as potential future, clinical applicability. 
 
 3.5.1 Klinefelter Syndrome 
 Klinefelter syndrome (KS) is the most common genetic cause of male 
infertility, with a prevalence of 5% in men with severe oligozoospermia and 10% in 
men with NOA[295, 296]. Eighty percent of the men are 47,XXY, while the remaining 
have mosaic patterns such as 46,XY/47,XXY, 48XXXY or 48 XXYY[297]. The extra X 
chromosome has been shown to be of paternal origin in 60% of the cases. In this 
setting, X-Y non-disjunction during meiosis 1 is the most common error, and 
diminished X-Y recombination has also been described. For the maternal cases, non-
disjunction due to errors in meiosis is associated with increased maternal age[298]. 
 Despite the inactivation of an extra X chromosome in mammals, it is known 
that approximately 15% of the genes continue to be active in the silent 
chromosome. This process is skewed in patients with KS, resulting in an excessive 
genetic output that impairs androgen production and spermatogenesis[298, 299].  
 The main clinical characteristics of the KS are infertility, hypergonadotrophic 
hypogonadism, and cognitive disorders. The phenotype spectrum is wide, 
depending on the parental origin of the X chromosomes, the extent of genetic 
inactivation, and the presence of mosaicism[298, 300]. AR gene inactivation also 
seems to play an important role. Since the length of polymorphic stretch of CAG 
repeats contained in the exon 1 of the AR gene is inversely related to the receptor’s 
activity, inactivation of the AR gene with a shorter or longer stretch of CAG repeats 
may be related to the severity of the syndrome[301]. Furthermore, a recent paper 



reported that T production by LCs is normal or even increased in men with KS[302]. 
These evidences point toward a lower release of T into the bloodstream associated 
to the lack of responsiveness of the AR. 
 Regarding the impact of KS on spermatogenesis, a common feature is 
progressive degeneration of GCs and SCs, mainly after puberty[303, 304]. The 
mechanisms leading to testicular degeneration are still unknown, but 
overexpression of X chromosome genes, such as the angiotensin type-II receptor 
and the TEX11 genes, malfunction of FSH and androgen receptors, and increased 
aromatase activity may have a role[303, 305, 306].  
 Although men with KS and azoospermia show dramatic testicular alterations, 
the success rate of microTESE in finding viable sperm is 68%, and all the children 
born using IVF/ICSI with sperm from men with KS were healthy in one study[307]. 
This is probably due to small niches of undisturbed spermatogenesis composed by 
either a few GCs with normal karyotype, or by some 47,XXY GCs that are able to go 
through meiosis and produce sperm with normal karyotype (23,XY or 23,XX)[308, 
309]. Despite that, the risk of using a hyperploid 24,XY sperm exists, and the 
conception of a 47,XXY fetus has been reported, thus, preimplantation genetic 
diagnosis is indicated[310]. 
 
 3.5.2 Y-chromosome microdeletions 
 Located in the euchromatin zone of the long arm of the Y chromosome 
(Yq11), the AZF (azoospermia factor) region contains genes critical for 
spermatogenesis, among them, at least fourteen protein-encoding genes. These 
genes are divided in three groups based on their location:  AZFa, AZFb and AZFc 
[311]. Microdeletions occurring in any of these zones have the potential to impair 
fertility and are found in 10% of men with non-obstructive azoospermia and 5% of 
those with severe oligozoospermia, but the incidence, and even the phenotypes, 
vary geographically and ethnically[312-314]. 
 The AZFc group is located in the distal aspect of Yq11 and accounts for 60% 
of all Y-chromosome microdeletions (YCMD)[315, 316]. Several genes are located in 
the AZFc group, and the DAZ (deleted in azoospermia), a family of four genes 
implicated in spermatogenesis, has been the most studied[317]. The relative high 
incidence of de novo deletions via homologous recombination (HR) in this group is a 
product of the arrangement, similarity and the huge size of its amplicons, repetitive 
copies of nucleic acid sequences[318]. The most frequent deletion affecting the AZFc 
group is the one involving the amplicons b2 and b4 (b2/b4), which removes 8 genic 
families, including the DAZ family. Smaller partial deletions also exist and may 
happen either via HR, such as “b1/b3”, “b2/b3” and “gr/gr”, or via non-homologous 
recombination, such as P3a, P3b, P3c and P3b[316, 319].   
 Due to the wide variability of these deletions, the clinical and histological 
presentations are variable, but, in general, AZFc deletions are compatible with 
residual spermatogenesis. Patients may present with azoospermia or severe 
oligozoospermia, and histological findings vary from SCO, to MA and HS. Viable 
sperm can be found in up to 70% of the azoospermic patients that undergo 
microTESE[312]. Complete AZFc deletions could cause Y-chromosome loss and lead 
to 45X/46XY karyotype with Turner stigmata or sexual ambiguities. To avoid the 



transfer of 45X0 embryos, preimplantation diagnosis should be offered to these 
couples[320]. 
 Responsible for 15% of YCMD, the AZFb group is located from 18.1 to 
24.7 Mb of the Y chromosome and contains the RBMY1 and PRY genes. The first is a 
testis-specific splicing factor expressed in the nucleus of spermatogonia, 
spermatocytes, and round spermatids, and the second is involved in the regulation 
of GCs apoptosis[316].  Complete deletions of this zone (proximalP5/P1) are 
massive, perhaps the largest in human genome. Homologous and non-homologous 
recombinations participate in these events, but other unknown factors may be also 
involved[321]. Since AZFb overlaps AZFc by 1.5Mb, combined AZFb + AZFc 
deletions occur and are, indeed, more frequent than isolated AZFb deletion[312, 
322]. 
 Patients with complete AZFb or AZFb + AZFc deletions show azoospermia, 
and testicular biopsy usually reveals SCO or diffuse early MA, hence, these patients 
must use donor sperm or adoption[312].  
 The AZFa group is located closer to the centromere and contains three genes: 
DBY, USP9Y and UTY. The DBY gene acts as a spermatogenic regulator during the 
earliest stages (i.e. spermatogonia), while the other two apparently are not crucial 
for male fertility[323, 324]. AZFa deletions have been shown to occur via 
intrachromosomal recombination between flanking repeats[325]. 
 Complete deletion of AZFa is rare (3%) and carries the worse prognosis 
among all YCMD. Invariably all patients show azoospermia and SCO, and no sperm is 
found on microTESE. Therefore, these patients should not be submitted to invasive 
sperm retrieval procedures. In contrast, men with partial AZFa deletions often have 
HS and present with severe oligospermia or cryptozoospermia[312, 322]. We expect 
that genetic engineering advances will allow us to induce meiosis progression in 
stem cells, producing spermatozoa and helping men with complete AZFa, AZFb and 
AZFb+c deletions to father offspring in the future. 
 
 
 3.5.3 Micro RNAs 
 Micro-RNAs (miRNAs) are a class of short (20–23 nucleotides) single-
stranded non-coding nucleotides, and constitute one of the most abundant 
ribonucleoprotein complexes in the cell. miRNAs exert a regulatory function over 
the expression of several protein-coding genes, and, therefore, modulate a wide 
array of biological processes. Their mechanisms of action are still under debate, but 
may include direct destruction of targets mRNAs, translation repression, and other 
indirect pathways to inhibit protein synthesis[326-328]. Due to the fact that the 
expression of miRNAs varies among different developmental stages, tissues and 
diseases, specific expression patterns could be linked to specific pathologies, and, 
thus, be used as diagnostic and therapeutic tools[329].  
 Regarding spermatogenesis, several animal studies showed that GCs miRNAs, 
many of them stored in the cromatoid body, are implicated in the regulation of 
apoptosis, proliferation and differentiation. This post-transcriptional regulation is 
essential because GCs are transcriptionally silent during certain stages of 
spermatogenesis. Alterations of miRNAs expression patterns could impair 



spermatogenesis, and might explain a number of “idiopathic” male infertility 
cases[330-332].  
 Recently, efforts have been directed to associate specific miRNAs expression 
patterns in the seminal plasma with human testicular histopathologic patterns and 
clinical findings, with the idea of creating new diagnostic tools to assess the human 
male fertility[333]. So far 1,881 humans miRNAs have been described 
(www.mirbase.org)[334].  
 
 3.5.4 Epigenetic factors 
 Epigenetics is the study of several processes that alter gene expression 
without changing the DNA sequence. Some of these processes are DNA methylation, 
post-translational histone modifications, and chromatin remodeling. They can be 
cell, tissue, organ, sex and species-specific, can vary with different developmental 
stages, may be carried through generations and may be reversible[339]. 
 DNA methylation occurs when a methyl radical is added to cytosine-guanine 
dinucleotides (CpG) by DNA methyltransferases. Areas of DNA with high content of 
CpG, called “CpG islands”, have been found near promoters, and hypermethylation of 
CpG islands is associated with gene suppression, while hypomethylation is linked to 
gene expression[177, 340]. 
 Histone methylation, acetylation, phosphorylation, ubiquitylation and 
sumotylation also modulate gene expression. Amino acid residues in the N-termini 
of histone tails are the sites for post-translational modifications, and several 
enzymes are involved in the process. The final effect, gene activation or suppression, 
depends on the combination among different sites and radicals[339, 341-343]. 
 In addition, the manner by which DNA segments are packed around histones 
determines whether or not they are available for transcription. Tightly packed DNA 
segments found in heterochromatin are silent, while the loose DNA segments that 
constitute euchromatin are usually transcriptable, therefore, chromatin remodeling 
may activate or inhibit gene expression. The exact remodeling mechanisms are still 
unknown, but they appear to be regulated by ATP-dependent chromatin remodeling 
complexes[344, 345].  
 The DNA content in the male GCs is packed in a very small volume to fit into 
the sperm head. To accomplish that, 80% of the histone content should be replaced 
by protamines via hyperacetylation of histone H4 during spermatid stages. 
Highlighting the importance of this process, the degree of histone-protamine 
replacement has been correlated with the fertilizing capacity of the sperm, and 
decreased levels of H4 hyperacetylation were demonstrated in men with MA[346, 
347]. Furthermore, the residual histone-bond DNA content is thought to be crucial 
for sperm function and early embryo development. The ratio between different 
types of protamine also affects fertility, as shown by studies demonstrating an 
increased DNA fragmentation in men with low P1/P2 ratio[339, 348-350]. 
 A key event during spermatogenesis is the epigenetic reprogramming of GCs 
by widespread erasure of DNA methylation followed by de novo methylation. The 
reprogramming takes place during GCs differentiation during gonadal development, 
and during spermatogenesis, establishing a male germ line pattern of DNA 
hypomethylation. Not surprisingly, elevated DNA methylation at numerous 
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sequences has been associated with poor quality human sperm. However, the 
relationship between widespread DNA methylation and fertility is still a matter of 
debate[351-354]. 
 Since some epigenetic alterations can be transmitted through generations, 
attention has been drawn to the association between assisted reproductive 
technologies and pathologies related to genomic imprinting, such as Prader-Willi, 
Beckwith-Wiedemann and Angelman syndromes. This may occur due to the use of 
defective sperm with incomplete reprogramming, or epigenetically imperfect 
oocytes arising from super-ovulation. Other cause may be ART procedures 
performed at the time of epigenetic reprogramming[177, 339, 350, 355].  

Epigenetic mechanisms may also be the way by which several diseases and 
conditions, such as obesity and environmental exposure, affect spermatogenesis and 
influence the offspring[356-358]. However, further studies are needed to clarify 
these associations. 
 

4 Conclusion 
 Advances in Andrology over the last three decades have paved the way for 
the elucidation of the molecular mechanisms that control human spermatogenesis. 
Rapid development of translational medicine and bench-to-beside collaborations 
are indispensable to further scientific knowledge. Much of the data reported here 
was first hypothesized in the clinical scenario, then elaborated using animal models, 
confirmed in human descriptive studies, and finally transported back to clinical 
practice via clinical trials. We still are far from completely comprehending the origin 
and function of the male gamete, but now we can have glimpses of this enormous 
universe. 
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Figure 1: Hormonal and Paracrine Control of Spermatogenesis 
 
  



 
Figure 2. Different seminiferous tubular histology patterns imaged with 
multiphoton microscopy at lower magnification (A, D, G) and high magnification (B, 
E, H) compared to high magnification H&E stained tissue. Normal 
spermatogenesis(A, B, C). Seminiferous tubules with Sertoli cells only(D, E, F). 
Seminiferous tubules with Sertoli cells only and moderate peritubular fibrosis(G, H, 
I). Scale bar represents 500 microns for low magnification and 80 microns for high 
magnification. Reprinted from The Journal of urology 2012;Najari BB, Ramasamy R, 
Sterling J, Aggarwal A, Sheth S, Li PS, et al. Pilot study of the correlation of 
multiphoton tomography of ex vivo human testis with histology. 188:538-43 with 
permission from Elsevier 

  



 
Figure 3: Early (left) and late maturation arrest (right). Reprinted from Fertility and 
sterility 2015. Bernie AM, Shah K, Halpern JA, Scovell J, Ramasamy R, Robinson B, et 
al. Outcomes of microdissection testicular sperm extraction in men with 
nonobstructive azoospermia due to maturation arrest. 104:569-73 with permission 
from Elsevier 
  



 
 

 
 
Figure 4: Y-chromosome microdeletions[293, 312, 314, 322]. 
  



 

Table1 summarize some of the ECs that affects human spermatogenesis: 
 

Chemical Agent Application Exposure route Effect 
Phthalates Plastics, tubings Skin contact, 

inhalation 
Anti-androgenic 

Bisphenol A Polycarbonate 

plastics and epoxy 

resins 

Ingestion Anti-androgenic, anti-
estrogenic 

Cadmiun Batteries and 
pigments 

Smoking, 
occupational 

BTB disruption, 
Decreased T levels 

Tetrachlorodibenzo-
p-dioxin 

Herbicides and 
pesticides 

Occupational, 
ingestion 

BTB disruption, 
Anti-androgenic 

Lead Pigment in 
paints and fuel 

Inhalation Chromatin disruption, 
damage to mannose 
receptors 

Ethylene dibromide Fuel component 
and fumigant 

Inhalation Chromatin disruption 

1,2-Dibromo-3-
chloropropane 

Fumigant Inhalation, skin 
contact 

Increased oxidative 
stress 

 
  



Table2 lists the most studied miRNAs in infertile men[329, 335-338]. 
 

Name Function Expression Findings associated 
miR-34 family p53 tumor suppressor 

network 
 

Down NOA 

miR-122 Suppresses the transcription 
of transition protein 2 

Down NOA 

miR-19b Inhibition of apoptosis Up NOA 
Let-7a Cell proliferation Up NOA 
miR-181a Regulation of T cell 

sensitivity 
Down NOA 

miR-146b 
 

Regulation of apoptosis Down NOA 

miR-513a-5p 
 

Regulation of apoptosis Down NOA 

miR-509–5p 
 

Regulation of apoptosis Down NOA 

miR-374b 
 

Oncogene Down NOA 

miR-141 
 

Regulation of cell cycle Up NOA 

miR-429 
 

Unclear Up NOA 

miR-202-5p Unclear Down NOA 
miR-7-1-3p  
 

Regulation of cell cycle Up NOA 

 
 


