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Introduction
IVF is widely used to treat infertility, although the rate of
success of treatment is low, with an average overall birth rate per
embryo of 13.9% (Templeton et al., 1996). Various factors have
been identified as affecting this rate, such as the age group of the
women concerned, the duration of infertility, the usage of
donor’s eggs and perhaps the treatment centre and other
subsidiary aspects. Other factors have recently been examined,
such as the stress suffered by embryonic blastomeres through
inappropriate culture conditions (Pool, 2002).

The aim of this paper is to compare the recognition of embryos
for their potentiality of producing births as determined by a
group of experts and a machine recognition procedure, both for
a basic set of embryos, where the main characteristics of the
patients are given and a blind set of embryos, where no
information is indicated.

There has also been some interest and concern to detect
morphological factors of embryonic cells through the
application of classification criteria (Puissant et al., 1987;
Mills, 1992; Steer et al., 1992; Giorgetti et al., 1995; Saith et
al., 1998; Racowsky et al., 2003). Further, it has been
suggested that human embryos can be selected for transfer
using morphology at the cleaving and blastocyst stage (Ziebe
et al., 1997; Scott et al., 2000), and many other proposals
have been formulated (e.g. Shulman et al., 1993) to
recognize with precision whether or not the embryo will give
rise to a birth (Van Royen et al., 1999).

Studies have also been undertaken to determine appropriate
scoring methods for day 1, 2, 3 and 5 embryos and
combinations of these. In particular, the morphology of
pronuclear oocytes has been linked with implantation and
development to the blastocyst stage (Scott, 2003).

Experimental results on the recognition of
embryos in human assisted reproduction
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Abstract
The recognition of embryos suitable for transfer in human assisted reproduction is important, and there is evidence that the
morphology of the cells may influence the results achievable. A procedure for this recognition problem has been formulated
based on morphological attributes of the images of the embryos, and it is therefore useful to compare the recognition of
experts with that of a machine programme. The aim of this paper is to compare the precision in the recognition of viable
embryos by a group of experts to that of a machine recognition procedure, both for a basic set of embryos and a blind set.
Experts were asked to classify the images of 249 embryos transferred to 73 patients, indicated as the training set and another
set of 103 embryos transferred to 35 patients called the blind set. A machine programme was used for the same classification.
For all the experts the results were statistically not significantly different from independence, which means that viable
embryos are not recognized as such for both data sets. Instead, the machine algorithm recognizes in a statistically significant
way, the membership class for the embryos submitted. Cell morphology is important for IVF, but differences do not appear
to be discernable by the senses, clinical insight, experience and/or training, while classification by machine methods
provides more accurate results, which could be improved by enlarging the training set.
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The selection of suitable embryos may be done through
clinical methods (Gardner and Lane, 2003) and expert
evaluation (Boiso et al., 2002), or through automatic or
machine recognition methods, in which a suitable calculus is
carried out, either on a-priori clinical principles, or by
determining a classifier, i.e. a rule that will consider a set of
attributes of an embryo and determine a label for it, which
will suggest whether or not it will give rise to a birth
(Grimaldi et al., 2002; Patrizi et al., 2003).

Such a classifier must be regarded purely as an evaluation
rule, since no attempt is made to assess the many other
aspects that a clinician considers when performing a transfer
to a patient. For instance, the evidence for the use in
determining quality of oocytes with PB1 and PB2
fluorescence in-situ hybridization is uncertain (Verlinsky et
al., 2003), but this type of scarcely visible characteristics, or
some instrumental or proxy characteristics, may be picked up
through the automatic image analysis performed by this
algorithm.

The evaluation rule or classifier is formulated on the basis of
a set of objects whose class membership is known. On the
basis of this set, called a training set, a rule is derived by
placing the objects in a homogeneous group on the basis of
their attributes and their class. This is an inductive learning
procedure, well known to humans, who use it to learn how to
read and solve problems and perform diagnoses. The only
difference is that this machine algorithm derives explicit
mathematical rules, rather than synthetic judgements.

With the automatic recognition procedure, the embryos are
classified before transfer, without considering the
characteristics of the recipient. However, as it is often
indicated, the characteristics of the patients are important
aspects for the evaluation of the suitability of the embryo,
and thus should also be considered. On the other hand, these
aspects are very controversial, so it may be advantageous to
inquire regarding the accuracy obtainable by machine
classification, without taking these factors explicitly into
account.

In fact, what is really being compared is the experts’ clinical
intuition of the morphology of the embryo and the machine
programme’s evaluation method, for a reference population.
This will not consist of all the potential mothers who would
like to be treated, but only of those that are deemed suitable
by the clinical centre to receive such transfers and have been
accepted for such an intervention.

Materials and methods
Photographs of 249 embryos usually at the 4-cell 
stage were taken 40–50 h after fertilization and 
before transfer, by placing each embryo under a 
microscope (Inverted Microscope Olympus IX 70; Olympus
America Inc., Melville, NY, USA), with a camera (video
camera JVC TK-C401EG; Victor Company of Japan, 
Limited (JVC), Yokohama, Japan). Examples of the 
images used in the experimentation can be checked
(http://banach.sta.uniroma1.it/trace/reproduction/initial.html,
and follow the links). All the embryos considered were
subsequently transferred to uteri.

The research was conducted at a single fertility centre, during
the period from January 1998 to October 1999 and involved
73 women, whose infertility factor was mainly andrological,
in a total number of 107 transfer cycles with transfer of
intracytoplasmic sperm injection (ICSI). The women ranged
in age from 23 to 43 years (Grimaldi et al., 2002), and later
the experiment was extended to over 800 patients (Patrizi et
al., 2003).

Ovarian stimulation was carried out by administering
recombinant FSH (Gonal F; Serono International SA,
Geneva, Switzerland) at a dosage of 150–400 IU according to
individual response after suppression with gonadotrophin-
releasing hormone analogue in a daily preparation
(Suprefact; Hoechst Marion Roussel Deutschland, Bad
Soden Germany). Oocyte retrieval was carried out with
ultrasound-guided transvaginal follicular aspiration after 35
h from the administration of 5000 IU of human chorionic
gonadotrophins (Profasi, Serono). Gametes and embryos
were cultured under oil in drops of a culture medium (IVF
Scandinavia; Vitrolife Sweden AB, Kungsbacka, Sweden)
with an atmosphere of CO2 of 5% in air. The ICSI process
was performed according to current methodology (Van
Steirteghem et al., 1993).

The control (blind) set consisted of 35 women whose
characteristics were not significantly different from the
initial sample.

With the training set of embryos, the number of births
obtained was 32 from 27 women, while for the blind set 15
births occurred from 13 women. For the two samples, the
average number of births per embryo transferred was 12.85
and 14.6% respectively. The two proportions are not
significantly different from each other or from overall birth
rates, as indicated above, at a 95% statistical significance
level and are in line with common experience.

Six experts in the field of embryo selection and transfer, were
chosen and were asked to consult the given web page, or a
CD-ROM with the two data sets, which had been forwarded
to them. The two data sets consisted of images of embryos
forming the training set and the blind set. The first set
contained some information on the prospective mother, such
as age, while the second set did not include any information.
Two sets of tests were run. The first test asked the experts to
indicate the number of births per transfer cycle from the
images of the given embryos, irrespective of which embryo
gave rise to a birth, while the second test asked to indicate the
actual embryos that could have given rise to the births that
had been predicted in the first test.

More accurate predictive results can be obtained by using
more clinical centres, randomly drawn, and a larger random
sample, but the experimental design adopted, here, in which
only one clinical centre was used and the sample consisted of
all the transferred specimens in the period, may be
considered adequate for this experimentation.

It was pointed out to the experts that the data submitted
consisted of an experimental sample, and might not have
come from a typical population, due to the location of the
centre, the historical period of time and other factors, which
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could affect the sample drawn. Also, the double task assigned
to the experts blocked the rather obvious policy to assign no
births, on the presumption that the birth rate would be much
lower (it was in fact around 14%), so with such a policy, the
precision of a correct recognition increases to 86%.

In fact, no expert fell back to this stratagem, although one
expert (F) did predict that each patient would have at least
one successful birth for one data set, but not for the other.
Thus even in this case it can be assumed that his choices
reflected his evaluations, as otherwise he would have used
the same policy for both sets.

Every expert was asked to record in suitable electronic
forms, the following assessments: (i) for every transfer cycle
indicate how many births have occurred from these embryos.
Thus, a number 0, 1, 2,... had to be written next to each
identifier of each patient and each cycle. This was done for
each entry in the training set and in the blind set; (ii) for
every transfer cycle, indicate the actual embryos that gave
rise to a birth. Thus if a patient supposedly was going to give
rise to two births, the request was to choose which two
embryos would be responsible for this occurrence. Again,
this was done for the two sets of data.

While the outcome of the first test is known with certainty
(the number of births occurring in each transfer cycle), the
imputation of which embryo was in fact responsible for that
birth is not certain, but can be conjectured on the basis of the
automatic algorithm, which indicates this. Thus the second
test must be regarded as a consistency check on the machine
selection process.

Their answers were collected and the contingency tables
were formed; see Tables 1 and 2 for the first task and Tables
3 and 4 for the second task.

Table 1 for the training set and Table 2 for the blind set were
compiled as follows: 1. For every transfer cycle and for each
expert, the number of births was predicted by the expert and
this was compared with the number of actual births.
2. If one birth had occurred and one baby had been declared,
a ‘1’ was scored for that expert and that transfer cycle in the
cell of the computational table in which one box was
identified by the labels ‘birth’ and ‘birth predicted’. 3. If twin
births had occurred and only one had been predicted, a ‘1’
was scored as before while in the box labelled by ‘birth’ and
‘no-birth predicted’ a second ‘1’ was scored. 4. If no births
had occurred but one was predicted for that transfer cycle,
then a ‘1’ was scored in the box ‘no-birth’; and ‘birth
predicted’;. 5. Similarly, if no births were predicted and no
births occurred, for that set of embryos, the number in that set
was scored. 6. The scores obtained for each expert were then
summed and transferred to a contingency table with four
entries as depicted in Tables 1 and 2. It should be noted that
the margin totals varied because of the different imputations
made by the experts.

For Tables 3 and 4, exactly the same procedure was
followed, this time on the individual embryos. The total
number of embryos were respectively 249 for the training set
and 103 for the blind set, so these numbers formed the
marginal grand total, as these are the number of embryos

considered in each set, however they were assigned.

The predicted outcome for each embryo by each expert,
which formed the basis of the scoring in these tables, was
compared with those given by TRACE (total recognition by
adaptive classification experiments) algorithm.

The automatic recognition algorithm uses the training set to
form rules to assign embryos to either class based on their
image. The working of the algorithm is intuitive, and is based
on the human induction process, which it carefully follows.
The images considered are transformed into a set of
attributes, or characteristics, on the basis of their pixel map
and to each image in the training set a label is attached. The
algorithm then will form as few homogeneous groups as
possible so that all the members of each group have the same
label. The mean set of attributes for each group is then used
to assign labels to unlabelled objects. Each unlabelled object
will receive the label of the group whose mean set of
attributes is closest to its set of attributes. See the Appendix
for all the details.

All that is important here is to grasp that there is a machine
that recognizes with a certain performance and can be
compared with the live experts. The results of the machine
algorithm are presented in Table 5 for the first test for both
the training set and the blind set and in Table 6 for the second
test.

Results
Fisher’s exact test (Conover, 1971) and the log odds ratio test
were carried out for each expert’s 2 × 2 contingency tables
presented in Tables 1–4 and for the machine programme results
presented in Tables 5 and 6. Additionally, the log odds ratio test
was also applied (Agresti, 1990) and all the results of these
statistical tests are presented in Table 7 and Table 8.

Fisher’s exact test works as follows. The frequencies in the table
may have arisen independently or according to a systematic
evaluation regarding the suitability of embryos, so the entries
will not be independent. If the marginal row and column totals
are fixed for a given table, the different possible tables that can
occur can be characterized by the frequency that will arise in the
top left cell. It is therefore possible to determine for all possible
values of this frequency, what would be its probability that such
a value had arisen, if there was independence. Thus if the
probability of the outcome frequency is higher than 0.05, the
entry of the table will be considered independent. Instead, if the
probability is lower than that level, this hypothesis of
independence must be rejected in favour of a systematic
relationship (Agresti, 1990).

The log odds ratio test is similar, but it is an asymptotic one. It
is based on comparing the odds of probabilities of the entries
that have occurred and one resorts to natural logarithms, so that
the product ratio is quickly distributed like a normal distribution
in the case of independence with a zero mean and an easily
calculated standard error. Alternatively, if the assignments of the
embryos to the class had been systematic, the mean of the log
odds ratio would mark a significant departure from a zero value.
When normalized by the variance, the normalized log odds ratio
will be either higher than 1.96, or smaller than –1.96.
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Thus, if the log odds ratio lies near zero, the frequencies are
said to be independent, as before by performing the required
test of significance.

These tests of hypothesis compare the actual outcome with a
theoretical outcome arising from independence of the entries
and may be subject to some random error. These tests are
therefore devised to ensure that if the data are really
independent, then in only, say, 5% of cases will the test reject
this conclusion. Obviously a type II error can also occur, and
the entries would be considered independent when really they
are not.

Note in any one trial, the null hypothesis is either correct or
wrong, but this cannot be determined. What is known is that if
the test is done over and over again with similar data, in 95%
of the times that the null hypothesis is confirmed, it will be
correct.

The attribution of the experts as to the number of births that
would result from the given transfers was independent of the
characteristics of the embryos. Thus, embryos were classed
with the same probability as, viable or not, irrespective of their
actual characteristics.

If there is no recognition capability on the part of the expert,
the number of times an embryo will be assigned to the ‘birth
predicted class’ or to the ‘no birth predicted’ class is about the
same, and this can be indicated as statistically independent.
Instead, if the expert is able to determine the potentiality of the
embryo correctly, the frequencies will be mainly concentrated
along the main diagonal of the 2 × 2 contingency table
constructed for each expert, as indicated above. This is not the
case, as can be seen from tables.

The same conclusions are reached for the expert selections in
the blind set in Table 2. Thus, the tests indicate that for all the
experts, there is no evidence that the recognition is systematic.

Much the same results occur in Table 3 and 4 for all the
experts, except expert E. This case is important and will be
examined below.

An interesting point is raised by expert F, who predicted at
least one birth from every transfer cycle in the training set.
This could have been considered as a misunderstanding of the
instructions regarding the selection process and scoring
methods, but this is unlikely, since the data given for the blind
set reflects a correct interpretation of the instructions.

Table 1. Classification of births by transfer cycles in the 
training set: results by experts.

Birth No birth Total

Predictions of A
Birth 19 13 32
No birth 27 28 55
Total 46 41 87

Predictions of B
Birth 10 22 32
No birth 23 33 56
Total 33 55 88

Predictions of C
Birth 13 19 32
No birth 15 36 51
Total 28 55 83

Predictions of D
Birth 16 16 32
No birth 25 30 55
Total 41 46 87

Predictions of E
Birth 20 12 32
No birth 23 34 57
Total 43 46 89

Predictions of F
Birth 30 2 32
No birth 81 0 81
Total 111 2 113

Table 2. Classification of births by transfer cycles in the 
blind set: results by experts.

Birth No birth Total

Predictions of A
Birth 7 8 15
No birth 12 13 25
Total 19 21 40

Predictions of B
Birth 2 13 15
No birth 9 15 24
Total 11 28 39

Predictions of C
Birth 3 12 15
No birth 8 16 24
Total 11 28 39

Predictions of D
Birth 5 10 15
No birth 12 13 25
Total 17 23 40

Predictions of E
Birth 7 8 15
No birth 10 15 25
Total 17 23 40

Predictions of F
Birth 10 5 15
No birth 25 8 33
Total 35 13 48
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Table 3. Classification of embryos by outcome in the 
training set: results by experts.

Birth No birth Total

Predictions of A
Birth 9 23 32
No birth 37 180 217
Total 46 203 249

Predictions of B
Birth 4 28 32
No birth 29 188 217
Total 33 216 249

Predictions of C
Birth 5 27 32
No birth 23 194 217
Total 28 221 249

Predictions of D
Birth 5 27 32
No birth 36 181 217
Total 41 208 249

Predictions of E
Birth 10 22 32
No birth 33 184 217
Total 43 206 249

Predictions of F
Birth 18 14 32
No birth 93 124 217
Total 111 138 249

Table 4. Classification of embryos by outcome in the 
blind set: results by experts.

Birth No birth Total

Predictions of A
Birth 5 10 15
No birth 14 74 88
Total 19 84 103

Predictions of B
Birth 1 14 15
No birth 10 78 88
Total 11 92 103

Predictions of C
Birth 3 12 15
No birth 8 80 88
Total 11 92 103

Predictions of D
Birth 5 10 15
No birth 12 76 88
Total 17 86 103

Predictions of E
Birth 6 9 15
No birth 11 77 88
Total 17 86 103

Predictions of F
Birth 8 7 15
No birth 27 61 88
Total 35 68 103

Table 5. Classification of births by transfer cycles in both sets: results by the 
automatic machine programme.

Training set predictions Blind set predictions
Birth No birth Total Birth No birth Total

Birth 25 7 32 4 11 15
No birth 26 30 56 3 20 31
Total 51 37 88 7 31 38

Table 6. Classification of embryos in each set: results by the automatic machine
programme.

Training set predictions Blind set predictions
Birth No birth Total Birth No birth Total

Birth 16 16 32 4 11 15
No birth 35 182 217 3 85 88
Total 51 198 249 7 96 103
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If an expert classifies all the patients as not having any
successful births, then he will be correct in a very large number
of cases, but he will destroy his livelihood. For the same
reason, the machine programme must not apply these basic
statistical outcomes, since in this case it will report no births.
The importance of the two tests performed is now evident.

A similar analysis is conducted on the classification of
individual embryos indicated in Tables 3 and 4.

The classification results for the algorithm TRACE are
reported in Tables 5 and 6 with regard to the predicted
outcomes per transfer cycle and with regard to the prediction
of which embryos will gave rise to births.

For the prediction of the elements in the training set,
replication of the training was carried out 150 times by first
randomly selecting 10% of the training set and placing it aside
for verification and then performing the training until
convergence, in which all the patterns were classified
correctly. It is important to note that training is always
achieved with complete accuracy, that is all the patterns in the
training set are assigned by the algorithm to the same class as
they were assigned originally by the ‘teacher’ or by their
outcome (here birth or no birth; Nieddu and Patrizi, 2000).

Having trained the algorithm, it was applied to the randomly
selected verification set, without considering the known class
label and the algorithm attributed a label, based on a least

distance criterion as described in the Appendix. The result was
compared with the known class label and was used as the basis
for the results reported in the tables.

As this verification procedure was repeated 150 times, on
average every embryo appeared in verification 15 times, so
each was placed in class 1 or 2, depending on the majority of
times that it was assigned to one of the two classes (birth, no
birth).

It may happen that some embryos, due to chance, did not
appear exactly 15 times, but an even number of times and the
image was classified in verification in each class an equal
number of times (ties). Thus, a residual verification run was
carried out, with just those images of embryos that had
resulted in a tie in the classification forming the verification
set. In this way, the recognition of every embryo in the training
set was also determined by the algorithm, and these are the
results reported in aggregate form for the patients in Table 5
and for each embryo in Table 6. The Fisher Exact test carried
out on this data is highly significant in most cases. In fact, for
the training set, the probability of a two-sided independence
was less than 0.0066 and this confirms that there is
dependence between the results reported.

In the identification of each embryo as being viable or not, the
results are significant in the training set, which exhibits a very
low probability that this result could have occurred by chance
(5.05 × 10–5) or less than one chance in 20,000.

Table 7. Probability values for Fisher’s exact test for the classification of 
outcomes from the training and blind sets for transfer cycles and single embryos.

Expert Outcome by transfer cycle Outcomes by embryos
Training set Blind set Training set Blind set

A 0.3817 1.0000 0.1451 0.1457
B 0.4927 0.1504 1.0000 1.0000
C 0.3441 0.4770 0.3759 0.1993
D 0.8241 0.5115 1.0000 0.1238
E 0.0505 0.7486 0.0414 0.1068
F 0.0784 0.5088 0.1837 0.1378
Machine 0.0066 0.4008 5.05 × 10–5 0.0082

Table 8. Log odds ratio results and their standard error of estimates for the classification of outcomes fro the training and 
blind sets for transfer cycles and single embryos.

Expert Training set for transfer Blind set for transfer Training set for embryo Blind set for embryo
cycles classification cycles classification classification classification 
Log odds Standard Log odds Standard Log odds Standard Log odds Standard
ratio error ratio error ratio error ratio error

A 0.4159 0.4498 –0.0535 0.6543 0.0181 0.4326 0.9719 0.6204
B –0.4274 0.4683 –1.3610 0.8687 –0.0768 0.5705 –0.5849 1.0882
C 0.4960 0.4836 –0.6931 0.7773 0.4460 0.5345 0.9163 0.7444
D 0.4823 0.4453 –0.6131 0.6784 –0.0714 0.5199 1.1527 0.6297
E 0.9017 0.4541 0.2719 0.5592 0.9200 0.4257 1.5404 0.6178
F – – –0.4463 0.6819 0.5390 0.3818 0.9496 0.5668
Machine 1.4161 0.5046 0.8855 0.8510 1.6487 0.3988 2.3324 0.8283
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For the blind set, the whole training set was used to train the
classifier, and the classifier that resulted was used to classify
the patterns in the blind set consisting of the images of 103
embryos. The results are reported in Tables 5 and 6 as well
respectively for the patients and for the embryos transferred.

In Table 5 for the blind set, Fisher’s exact test revealed that the
results were not significantly different from independence,
while for Table 6, where recognition was carried out on each
embryo, the Fisher Exact test provided a very significant result
indicating a value of 0.0082. The classification procedure
being different for the training set and the blind set may lead
to some differences over and above sampling variability, due
to this factor. In particular, the low frequencies obtained for the
blind set in Table 5 may account for this non-significant result.

This aspect is intrinsic in the statistical tests and is comforting,
as it shows that these tests are very sensitive.

However, in this case, if a bigger set had been examined all
these results might have been significant. It is well known that
cell frequencies should be greater or equal to 5 (Haberman,
1978). This was in fact brought out in the extension of the
research conducted (see Patrizi et al., 2003).

Discussion
These experiments were carried out with a small sample, and
more accurate results could be obtained by extending the
sample of embryos to be used in the experiment (see Nieddu
and Patrizi, 2000 and Patrizi et al., 2003). Thus, the prediction
error can be made increasingly small by suitably enlarging the
training sample. This will render false negative results
increasingly unlikely, although this is not an issue in this paper.

The indication by all the experts of the number of births that
will arise in a given circumstance from the individual transfer
cycles, on the basis of the evidence given here, is no better
than if a random draw, while five out of six experts failed in
the selection of embryos that are considered responsible for a
birth. In contrast, for the algorithm TRACE, precision is
significantly different from randomness at the given level of
confidence, except for the recognition of the number of births
by transfer cycle in the blind set, which is probably due to the
frequencies resulting after the aggregation by transfer cycle,
technically because of the reduction in the degrees of freedom.

Expert E behaves differently. With regard to the determination
of the number of births for the patients in the training set, his
classification is not significantly different to that obtainable by
random choice, while in the identification of the embryos, the
accuracy is significantly different from equiprobality.

Different selection criteria seem to inspire expert E in his
choice. Perhaps he relies too much on prior knowledge rather
than observation. In fact, expert E has a close association with
the experimentation, and the fact that the analysis undertaken
provides different results for this expert is an important
indication of the accuracy and the sensitivity of the analysis. It
is for this reason that his results have been included.

Clearly, the behaviour of the six experts in the various tests
indicates that selection is a value laden choice process, or

ideological and that not enough weight is given to the
systematic factors, whatever they are, which permit
recognition. There is emotion in their choice, which is not
present with TRACE. This favours machine methods for
diagnosis, perhaps in combination with clinical insight.

Moreover, the machine procedure does not require
visualization, in the same way as humans, of the
morphological factors to be considered, and it could well be
that, for instance, when considering bovine embryos, the
determination of the attributes would not be jeopardized by the
opacity of the blastomeres (Van Soom et al., 2003).

To conclude, the statistical tests performed indicate the
superiority of the algorithm over the judgement of experts.
Larger samples will give better results, but the general
conclusion should be nonetheless clear.
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Appendix

The classification algorithm consists of a procedure called
TRACE (Total Recognition by Adaptive Classification
Experiments; Nieddu and Patrizi, 2000). Here embryos are
identified as belonging to one type or to the other, as in the
earlier study, where the algorithm and the results are fully
explained (Grimaldi et al., 2002), while a larger experiment
was also conducted (Patrizi et al., 2003).

The pattern recognition algorithm

Pattern recognition methods consider a number of defined
characteristics, measured for each object to form a pattern
vector, which is an ordered list of values of the chosen
characteristics for that object. Each object (embryo)
considered is assigned to a membership class, available after
exhaustive tests or at the end of a certain period (e.g.
gestation). The class to which the object belongs may
eventually be known precisely or imprecisely, i.e. with a
certain ambiguity.

The aim of a pattern recognition algorithm is to determine a
rule, called a classifier, such that given the characteristics of
an object, it will assign to it a membership class, on the basis
of the rule. Thus, it constitutes an induction procedure,
where the membership class is inferred, based on the
available characteristics (Nieddu and Patrizi, 2000).

The method used, depicted by a flow diagram in Figure 1

considers a training set of patterns with assigned
membership classes to form the classifier. For each class, a
mean pattern vector, called a barycentre, is formed
component by component, by averaging over each
characteristic for all the patterns in that class.

Once these barycentres have been calculated, one for each
class, the distance of every pattern from each barycentre is
calculated. All patterns which fall nearer to a barycentre of
another class than to a barycentre of its own class are
marked. The pattern that is the furthest from the barycentre
of its own class is selected and used as a seed for a new sub-
group of the class.

Distances of all the patterns from all the barycentres of the
given class and the new seed barycentre are determined and
each pattern is reassigned to the barycentre of its own class
to which it is nearest. The barycentres are calculated anew
with just the patterns assigned to that barycentre, which are
consequently updated.

Figure 1. Flow-chart of TRACE algorithm.
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The procedure continues, with one additional barycentre.
Again patterns are marked, as above, a new seed barycentre
is determined and the calculations are repeated with a higher
level of homogeneity.

It is easy to show that if there are no two identical patterns
assigned to different classes, a homogeneous set of
barycentres is formed, such that each pattern is closer to a
barycentre from its own class than to one of the other class
(Nieddu and Patrizi, 2000). When this is achieved, the
classifier has been determined.

In classification, the set of barycentres is used to determine
which barycentre is nearest to the pattern to be classified,
and then the class of that barycentre is assigned to the
pattern.

In a verification phase, part of the training set is set aside,
usually by selecting randomly, say 10% of the training set,
to use as a classification set, by ignoring the label of each
object, and the classifier is formed from the other 90% of the
training set. Then the membership classes for the objects in
the verification set are determined, as if the verification set
constituted a set to be classified and the class assigned to
each pattern is then checked with their real class attribution,
to determine the precision of the algorithm.

The number of trials and the training set are conventional,
but it is desired to choose sizes that allow a small standard
error without reducing the training set too much.

Determination of the properties of the 
data set

In this experiment regarding embryos, the characteristics of
the objects are defined from the images of the embryos, by
considering each image as an array of intensities of shades
of grey, from which the frequency distribution of the grey
tones for each picture in the horizontal and vertical direction
can be calculated. This pixel-intensity profile indicates the
homogeneity of the image, or whether it has many dark and
light spots and how they are distributed. From these
distributions, a certain number of polynomial functions of
central tendency and spread can be calculated, called central
moments, to express the shape of the distribution in a
standardized way. Here the first five moments, neglecting
the first, which is identically zero, in the vertical and
horizontal direction are considered for a total of 10
attributes.

An image was assigned to class 2 if a birth occurred from
that embryo, and to class 1 otherwise. Classes could initially
only be assigned with certainty in the case of single embryo
transfers, or in those cases where all the transferred embryos
gave rise to no births or when a set of embryos gave rise to
the same number of births.

Multiple transfers are the most common occurrence in which
the number of embryos is greater than the number of births,
so this must be resolved by determining which embryos are
likely to be responsible for the births. This was done in the
following way.

Apply this algorithm to the embryos whose outcomes are
known with certainty. These sure instances are used as the
training set and all the other pattern vectors were considered
as yet not classified, so after having formed the classifier, a
classification can be undertaken on this set of patterns to be
classified.

If for any group of embryos transferred to the same uterus,
the number of patterns classified as belonging to class 2 is
greater than the declared number of births, one or more
patterns which were furthest from the closest barycentre of
class 2 are arbitrarily assigned to the other class, and vice
versa. Through the application of this algorithm, every
embryo is assigned to a specific class. This procedure was
performed only once.

The final result of this stage is that every embryo has
received a unique class label, although the classification
must be considered as achieved with an ‘imprecise’ teacher
(Watanabe, 1985).

The correction algorithm

As some embryos may have been incorrectly classified due
to the rather arbitrary way in which multiple transfers are
assigned, a second stage of recognition is executed, by using
a suitable correction process.

Consider an object that has been placed in the wrong class
by the ‘teacher’ and suppose that it is used in the verification
set. The object will be assigned predominantly to its correct
class, if the classification is assumed to have a good
precision, as its class label is not considered and as only its
attributes are considered for the classification. However,
since by hypothesis it was assigned initially to the wrong
class, in the verification, on repeating this experiment
repeatedly with different training sets, it will result
predominantly assigned by the algorithm to a wrong class.

By replicating the training and verification phase, say 150
times, as indicated above, 150 replications are obtained and
on the average a given pattern will appear in verification
about 15 times. This is quite sufficient to base a conservative
correction procedure.

Thus, it is methodologically sound to correct the
classification, if the misclassification occurs in a high
proportion of the time that the object appears in the
verification sample, significantly more often than it would
be misclassified randomly by the algorithm. It is considered
correct to change the class if a pattern is misclassified in
verification, over 66% of the time, given that the average
rate of precision here is over 78%, see (Bonfazi et al., 1996).

Here it is required, since the number of births is fixed for
each patient, to impose an additional condition. A
corresponding embryo transferred to the same uterus from
another class had to be similarly misclassified. Thus if for a
transfer cycle it was found that in a high proportion of the
times two embryos were classified incorrectly in verification
in different classes, the assigned classes were exchanged for
the two embryos. This was carried out on eight pairs of
embryos regarding seven women.
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Full details regarding the classification algorithm and the
imprecise training and correction phase have been published
elsewhere (Grimaldi et al., 2002; Patrizi et al., 2003).
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