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Abstract 18 

Obesity, defined as excessive accumulation of fat in adipose tissue, is a metabolic 19 

disorder resulting from behavioral, environmental and heritable causes. Obesity 20 

increases the risks of hypertension, diabetes, cardiovascular disease, sleep apnea, 21 

respiratory problems, osteoarthritis and cancer. Meanwhile, the negative impact of 22 

obesity on male reproduction is gradually recognized. According to the clinical 23 

investigations and animal experiments, obesity is correlated with reductions in sperm 24 

concentration and motility, increase in sperm DNA damage and changes in 25 

reproductive hormones. Several mechanisms can elucidate the effects of obesity on 26 

sperm functions and male subfertility, i.e., the excessive conversion of androgens into 27 

estrogens in redundant adipose tissue causes sexual hormone imbalance, subsequently 28 

resulting in hypogonadism. Secondly, adipokines produced by adipose tissue induce 29 

severe inflammation and oxidative stress in male reproductive tract, directly impairing 30 

testicular and epididymal tissues. Moreover, increased scrotal adiposity leads to 31 

increase gonadal heat, continuously hurting spermatogenesis. Therefore, obesity alters 32 

the systematic and regional environment crucial for spermatogenesis in testis and 33 

sperm maturation in epididymis, and finally results in poor sperm quality including 34 

decreased sperm motility, abnormal sperm morphology and acrosome reaction, 35 

changed membrane lipids and increased DNA damage. Furthermore, recent studied 36 

indicate that epigenetic changes may be a consequence of increased adiposity. A 37 

major effort to identify epigenetic determinants of obesity revealed that sperm DNA 38 

methylation and non-coding RNA modification are associated with BMI changes and 39 
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proposed to inherit metabolic comorbidities across generations. This review will 40 

explain how obesity-related changes in males to influence sperm function and male 41 

fertility as well.  42 

  43 

Page 3 of 38



Introduction 44 

Obesity is a metabolic disease determined by lifestyle such as physical activity, 45 

environmental factors (food variety and intake) and genetic factors. In recent decades, 46 

it becomes a major health problem and increases worldwide at an alarming rate. 47 

Approximately 1.9 billion people are overweight (body mass index [BMI] ≥25 kg/m2) 48 

or affected by obesity (BMI ≥30 kg/m2) in the world (World Health Organization, 49 

2014), and are at risk of developing type 2 diabetes, cardiovascular disease and 50 

related metabolic and inflammatory disturbances. Additionally, there is growing 51 

interest and progress in understanding the impact of obesity on male reproduction. 52 

Recently, both clinical and experimental reveal the negative consequences of obesity 53 

on male reproductive function. According to the clinical investigation, men with 54 

overweight or obesity can decrease sperm quality including sperm concentration, 55 

sperm motility, acrosome reaction decline, increased sperm DNA damage and lower 56 

embryo implantation rates as well, comparing to those of normal BMI men (Jensen et 57 

al. 2004, Dupont et al. 2013, Sermondade et al. 2013, Samavat et al. 2014, Shukla et 58 

al. 2014, McPherson et al. 2015, Soubry et al. 2016). In consequence, obesity was 59 

associated with a more than 20% increased cases of subfertility and infertility (Cui et 60 

al. 2016).   61 

Notably, male fertility depends on certain amounts of spermatozoa with 62 

sufficiently high quality. And the spermatogenesis and sperm maturation are highly 63 

complex and specialized processes under strictly regulatory mechanisms, which are 64 

involved in the sex steroids, testicular niche, Sertoli cells, epididymic fluid and so on. 65 
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However, there is an undisputed fact that obesity affects male reproductive potential. 66 

In general, the excessive visceral adiposity in obese individual leads to the changes in 67 

hormone levels and promotes chronic inflammation in reproductive tract (MacDonald 68 

et al. 2010, Dulloo & Montani 2012), and high fat content in scrotum area also causes 69 

an increase in scrotal temperature. Thus, all of these consequences of obesity 70 

subsequently can damage the microenvironments of testes and epididymis, which is 71 

crucial for the production and maturation of spermatozoa. In practical terms, obesity 72 

primarily impair the physical and molecular structure of sperm during both 73 

spermatogenesis in testis and sperm maturation in epididymis, finally reducing sperm 74 

quality and causing male infertility risk.  75 

 76 

Obesity leads to hypogonadism 77 

Male obesity is associated with hypogonadism. Most obese males have altered 78 

reproductive hormonal profiles, e.g. elevated estrogen and leptin levels, and decreased 79 

testosterone, follicle-stimulating hormone (FSH), sex hormone-binding globulin 80 

(SHBG), ghrelin and inhibin B levels (MacDonald et al. 2010, McPherson & Lane 81 

2015, Martins et al. 2015, Martins et al. 2016, Cui et al. 2017). In obese men, the 82 

hyperactivity of aromatase (cytochrome P450 enzyme) in redundant white adipose 83 

tissue causes excessive conversion of androgens into estrogens. Therefore, 84 

gonadotrophin secretion from the pituitary decreases through feedback inhibition on 85 

the hypothalamus and pituitary gland, and then further impacts on testosterone 86 

production through falls in gonadotrophin releasing hormone (GnRH)-luteinizing 87 
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hormone (LH)/ FSH pulses (Mah & Wittert 2010, Michalakis et al. 2013, Rey et al. 88 

2013). The disruption of the negative feedback loop of the HPG axis finally leads to 89 

the significant decline in testosterone production. 90 

Undoubtedly, these sexual hormone imbalances may be one of the important 91 

causes for male infertility or subfertility induced by obesity. It is known that, both 92 

testicular development at puberty and spermatogenesis maintenance at adult depend 93 

on a high level of testosterone. Normal intra-testicular testosterone levels are 50 to 94 

100 times comparing to that in serum. Actually, this high level intra-testicular 95 

testosterone is required for maintenance of the blood-testis barrier (BTB), the specific 96 

cell junctions between Sertoli cells, as well as maintenance of the cell adhesion 97 

between Sertoli cells and germ cells (Lie et al. 2013). Meanwhile, testosterone is 98 

indispensable in meiotic progression and spermatid maturation. Thus, the high levels 99 

of testosterone, associated with Sertoli cells, construct the niche suitable for the 100 

developing germ cells throughout the different phases of spermatogenesis. 101 

Additionally, FSH is another important regulator of Sertoli cells, stimulating virtually 102 

all functions related to spermatogenesis. Therefore, the low testosterone and FSH 103 

levels in obese men can be a cause for impaired spermatogenesis and finally lead to 104 

reduced sperm counts and subfertility (Cheng et al. 2010, Ramaswamy & Weinbauer 105 

2015).  106 

 107 

Obesity induces Inflammation 108 

Accumulated evidences suggested a positive correlation between chronic 109 
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inflammation or pro-inflammation state and human obesity, while parallel 110 

relationships have been observed in animal models (Divella et al. 2016, Griffin et al. 111 

2016, Kolb et al. 2016). The white adipocytes produce and secrete a large number of 112 

molecules, collectively called adipocytokines or adipokines, and the majority of 113 

adipokines, such as tumor necrosis factor-α (TNF-α), interleukins (IL-1, IL-6 and 114 

IL-18) are pro-inflammatory cytokines, which are the mediators of inflammation and 115 

will further increase inflammation and attract macrophages. It is thought that 116 

pro-inflammatory cytokines contribute to the disruption in glucose homeostasis and 117 

insulin resistance that are often linked with obesity. Besides the adipocytes, these 118 

pro-inflammatory cytokines, such as TNF-α and IL-6, are also increased in the serum, 119 

testicular tissue and the seminal plasma of obese males (Zhang et al. 2015, Huang et 120 

al. 2016).  121 

It is now well-documented that pro-inflammatory cytokines exert some impacts 122 

on the HPG axis and on fertility (Tsatsanis et al. 2015). The systematic inflammatory 123 

diseases, such as rheumatoid arthritis, consequently display reduced testosterone 124 

levels. The pro-inflammatory cytokine TNF-α puts direct inhibition on LH function 125 

and subsequently, leading to low testosterone and male subfertility (Iwasa et al. 2009). 126 

Therefore, the increased systematic inflammatory cytokines in the serum of obesity 127 

males can induce a loss of androgen production at various levels of the hypothalamic–128 

pituitary–Leydig cell axis.  129 

In testis, pro-inflammatory cytokines can directly impair the seminiferous 130 

epithelium. Sertoli cells are response for many of these pro-inflammatory cytokines, 131 
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most notably IL-1, TNF-α and interferon. It has been postulated that these molecules 132 

affect the expression and assembly of the junctional proteins, e.g. zonulin/zonula 133 

occludens-1 (ZO-1), occludin, claudins and actin–myosin cytoskeletal proteins, 134 

thereby induce opening of the cell junctions between the adjacent Sertoli cells and 135 

lead to disturbances in the niche of seminiferous epithelium essential for 136 

spermatogenesis (Zhang et al. 2014, Chojnacka et al. 2016, Li et al. 2016, Stanton 137 

2016). In fact, impaired BTB and decreased expression of junctional proteins in 138 

Sertoli cell have been observed in many obese animal models induced by diet (Liu et 139 

al. 2014, Fan et al. 2015).  140 

Additionally, sperm maturation in epididymis is crucial for sperm to acquire the 141 

motile ability and fertile capacity. The epididymal epithelium transports proteins and 142 

lipids through epididymosomes to the sperm membrane, for which is necessary for 143 

sperm maturation (Sullivan 2015). Pro-inflammatory state induced by obesity can also 144 

damage epididymal epithelium function, by altering the environment within the 145 

epididymis, modifying the epididymosomes content and increasing the influx of 146 

neutrophils and macrophages to the epididymial lumen, resulting in higher cytokine 147 

expression and epithelial apoptosis, thus impeding sperm maturation and fertilization 148 

ability. Consequently, the presence of pro-inflammatory cytokines produced within 149 

the testis and epididymis or entered from the circulation during systematic 150 

inflammation, impinge upon the critical regulations of the spermatogenesis and sperm 151 

maturation.  152 

 153 
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Obesity enhances oxidative stress 154 

One of the main factors relevant to disrupted sperm function in obese males is the 155 

oxidative stress caused by excess of reactive oxygen species (ROS), mainly including 156 

superoxide anion, nitric oxide, hydroxyl radical and oxidants. ROS can be produced 157 

normally in cellular metabolism, whereas in excessive state, it can induce oxidative 158 

stress and cause damage to DNA and plasma membrane integrity in sperm, and 159 

increase stress on the testicular environment as well (Rato et al. 2014). Obesity, 160 

associated with the chronic inflammatory state, causes a higher metabolic rate and an 161 

increased ROS formation in testicular tissue, reproductive tract and semen. The 162 

pro-inflammatory cytokines, such as IL-6 and TNF-alpha, disrupt the seminiferous 163 

epithelium and epididymal epithelium by creating high levels of ROS. Additionally, 164 

inflammatory that attracts infiltrating phagocytic leukocytes are also capable of 165 

inducing oxidative stress in the male reproductive tract (Henkel 2011, Lavranos et al. 166 

2012). Several studies have shown that oxidative stress in semen and testis were 167 

positive correlations to the increase in BMI and sperm DNA damage, and negative 168 

correlation to the decreased sperm motility and acrosome reaction (Bakos et al. 2011, 169 

Tunc et al. 2011). Thus, obviously, excessive oxidative stress is one of the potential 170 

mechanisms leading to poor sperm quality in obese males. 171 

Besides, raised gonadal temperature in obese male may also contribute to altered 172 

sperm parameters. The process of spermatogenesis is highly sensitive to heat, with 173 

optimal temperature ranging between 34–35°C in human. However, in obese male, 174 

increased scrotal adiposity directly leads to increases in gonadal heat (Garolla et al. 175 
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2015). Definitely, increased testicular heat can substantially reduce sperm motility and 176 

concentration, and increase sperm DNA damage and sperm oxidative stress as well 177 

(Du Plessis et al. 2010). 178 

Furthermore, a positive correlation exists between increasing BMI and higher 179 

sperm/seminal plasma ROS levels (Tunc et al. 2011, Taha et al. 2016). In particular, 180 

spermatozoa are individually susceptible to oxidative stress owing to their specially 181 

simplified organelles and limited antioxidant defensive capacity. In spermatozoa, ROS 182 

are mainly generated from the sperm mitochondria and in normal condition, they may 183 

be facilitated with sperm-egg recognition, fusion and fertilization later (Amaral et al. 184 

2013), however, high levels of ROS prone to attack the lipids in sperm plasma 185 

membrane as well as the DNA in nucleus and mitochondria (Aitken et al. 2016). 186 

 187 

Obesity impairs sperm parameters 188 

The effect of male obesity on sperm parameters, such as sperm concentration, sperm 189 

motility and morphology, has been well documented in human and animal models. 190 

Many clinic investigations show that abnormal semen parameters can attribute to 191 

obesity including decreased sperm concentration, decreased sperm motility and 192 

increased abnormal morphology (Shukla et al. 2014, Guo et al. 2016). Actually, obese 193 

men are more likely to exhibit a reduction in semen quality than men with a normal 194 

weight and responsible to high risk of infertility. Consistently, abnormal sperm 195 

parameters including reduced sperm motility, decreased sperm counts and increased 196 

sperm deformity are also observed in the animal models with diet-induced obesity, 197 
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thereby result in male subfertility (Bakos et al. 2011, Fernandez et al. 2011, Fan et al. 198 

2015). One the other hand, it was verified that many factors altered in obese male may 199 

impair sperm quality including sexual hormone imbalance, oxidative stress, chronic 200 

inflammation. Notably, there are also some evidences indicates that weight loss, either 201 

by exercise, lifestyle changes or bariatric surgery, can efficiently result in increased 202 

serum testosterone levels and sperm count (Hakonsen et al. 2011, Palmer et al. 2012), 203 

suggesting benefits for a possible weight loss on male fertility. 204 

Moreover, a preliminary study reports that acrosome reaction, both spontaneous 205 

acrosome reaction and progesterone induced acrosome reaction, is impaired in obese 206 

men (Samavat et al. 2014). Similarly, declined sperm acrosome reaction induced by 207 

calcium ionophore A23187 is also observed in diet-induced obese mouse model (Fan 208 

et al. 2015). Although the relationship between male obesity and sperm acrosome 209 

reaction is few documented, it is reasonable that the impact of obesity on 210 

spermatogenesis and sperm maturation, which results in oxidative stress and 211 

membranous lipids alteration, may also cause some defects in acrosome reaction. 212 

Additionally, several comparative proteomic studies have been applied to 213 

illuminate the mechanisms of obesity impact on sperm quality. Using difference gel 214 

electrophoresis or liquid chromatography tandem mass spectrometry (LC-MS), 215 

differential expressed proteins in spermatozoa from obese males are identified 216 

(Paasch et al. 2011, Liu et al. 2015). Proteins with less abundant in obesity associated 217 

asthenozoospermia are mainly correspond to an array of biological functions 218 

including actin organization, flagellar assembly, vesicular traffic, protein degradation 219 
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and stress resistance, and most of which are involved in acrosome biogenesis, nuclear 220 

reshaping and flagellum formation during spermiogenesis that may directly causes 221 

abnormal sperm function.  222 

 223 

Obesity increases sperm DNA damage 224 

In general, the backbone of the DNA helix is frequently cleaved in spermatozoa 225 

owing to the uncondensed DNA and results in either single-strand breaks (SSB) or 226 

double-strand breaks (DSB). DNA fragmentation index (DFI) is a parameter 227 

represented the percent of spermatozoa in a semen sample that have single/double 228 

strand breaks in nuclear DNA. In clinics, DFI at 3–5% is considered normal, whereas 229 

rise to 25–30% may increase the risk of infertility (Bungum et al. 2011). 230 

The integrity of DNA in the sperm nucleus is an important determinant of semen 231 

quality since it is vital for fertilization rates, embryo quality, pregnancy rates and 232 

miscarriage rates as well. There are numerous human and animal studies to show the 233 

significant negative associations between obesity and sperm DNA integrity (Kort et al. 234 

2006, Chavarro et al. 2010, MacDonald et al., 2010; Bakos et al. 2011, Fariello et al. 235 

2012, Duale et al. 2014). Although various methods are applied to measure sperm 236 

DNA integrity, such as terminal-deoxynucleoitidyl transferase mediated nick end 237 

labeling (TUNEL), single cell gel electrophoresis (Comet) assay and sperm chromatin 238 

structure assay (SCSA), the most results consistently confirm the relationship between 239 

obesity and increased DNA damage. One of the main contributors in obesity for 240 

sperm DNA structure damage is ROS. The oxidative attack particular to sperm DNA 241 
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can lead to DNA fragmentation directly, as well as to cause the formation of base 242 

adducts particularly 8-hydroxy-2′-deoxyguanosine (8OH-dG), which results in base 243 

mismatch and DNA mutation (De Iuliis et al. 2009, Aitken et al. 2016). Meanwhile, 244 

the replacement of histone by protamines in late round spermatids also plays a critical 245 

role in sperm DNA protection. The histone acetylation is necessary for histones 246 

replacement by protamines and alterations in the histone acetylation are commonly 247 

found in the diet-induced obese mouse models, resulting in increased levels of DNA 248 

damage (Gaucher et al. 2010, Palmer et al. 2011, Davidson et al. 2015). On the other 249 

hand, because of the limitation in antioxidant defensive capacity and defectiveness in 250 

DNA repair system, the DNA damage induced by ROS in spermatozoa is particularly 251 

crippling and increase the risk of failure in further fertilization and embryonic 252 

development (Gavriliouk & Aitken 2015). 253 

  254 

Obesity alters sperm lipid composition 255 

The sperm membrane is composed of various saturated fatty acids (i.e. myristic acid, 256 

palmitic acid, stearic acid and etc.) and unsaturated fatty acids (i.e. palmitoleic acid, 257 

oleic acid, linoleic acid, arachidonic acid, docosahexaenoic acid and etc.). The fatty 258 

acid composition of spermatozoa is important for the sperm function, including sperm 259 

motility, viability and fertility (Aksoy et al. 2006, Martinez-Soto et al. 2013, Gangwar 260 

& Atreja 2015, Andersen et al. 2016). The polyunsaturated fatty acids in spermatozoa, 261 

especially docosahexaenoic acid (DHA), are positive associated with sperm 262 

concentration, morphology and motility (Aksoy et al. 2006, Tavilani et al. 2007, 263 
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Keber et al. 2013). The membranal lipids of the spermatozoa are mainly determined 264 

during spermatogenesis in testis and sperm maturation in epididymis. Therefore, as 265 

expected, the fatty acid composition of spermatozoa is also in relation to BMI, which 266 

consists with the changes of inflammatory and oxidative stress in testis and 267 

epididymis. Indeed, BMI is negatively correlated with sperm DHA and palmitic acid 268 

levels (Andersen et al. 2016). The fact indicates that changes in the fatty acid 269 

composition of spermatozoa could be one of the mechanisms underlying reduced 270 

sperm quality in men with high BMI.  271 

Meanwhile, membranal cholesterol is a main constituent in spermatozoa, which is 272 

quite various during sperm maturation and capacitation. The membranal cholesterol 273 

efflux that removes off cholesterol from sperm membrane during sperm capacitation 274 

is essential for modifying the membranal fluidity and further contributes to sperm 275 

motility maintenance and normal acrosome reaction (Wertheimer et al. 2008, 276 

Whitfield et al. 2015). Both clinic and animal studies have revealed the significant 277 

rise in sperm cholesterol content in obese males. These changes to sperm are proposed 278 

to cause sperm morphological abnormalities, decreased motility and premature 279 

acrosome reaction (Schisterman et al. 2014).  280 

Normally, the membranal constituents of spermatozoa are composed of high 281 

contents of unsaturated fatty acids, with especially high levels of DHA that 282 

contributes up to 30% of the total fatty acid composition (Aksoy et al. 2006, Tavilani 283 

et al. 2007, Andersen et al. 2016). However, the membranous unsaturated fatty acids 284 

are susceptible to ROS and result in lipid peroxidation (Henkel 2011, Aitken et al. 285 
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2016). Hence, induced by excess amount of ROS in obese males may lead to lipid 286 

peroxidation that is related to poor membranal lipid fluidity and further affect sperm 287 

motility and acrosome reaction. 288 

 289 

Obesity influences sperm epigenetic modification  290 

Epigenetic modifications, such as DNA methylation and hydroxymethylation, histone 291 

modifications and non-coding RNA expression, modulate the transcription intensity 292 

and regulate gene expression in time and space without altering the genetic 293 

information in DNA. Both genetic and environmental factors can affect the epigenetic 294 

modifications and eventually influence the phenotype. Obesity is considered as a 295 

metabolic disorder resulting from the obesogenic environment such as high energy 296 

intake and low exercise rate. However, recent studies on epigenetic modifications 297 

influenced by obesity demonstrate that alterations in DNA methylation are a 298 

consequence of increased BMI (Dick et al. 2014, Ozanne 2015, Wang et al. 2016, 299 

Mendelson et al. 2017, Wahl et al. 2017).  300 

Moreover, some clinical and animal studies suggest that paternal obesity may also 301 

have an impact on the metabolic health for his and or her offspring and 302 

grand-offspring, which means that children born from obese parents are more likely to 303 

develop childhood obesity and suffer from adverse metabolic diseases (Fullston et al. 304 

2015, McPherson et al. 2015, Slyvka et al. 2015, Chowdhury et al. 2016, Hur et al. 305 

2017, Lecomte et al. 2017). Meanwhile, it is equally clear that children from obese 306 

fathers are at higher risk of developing metabolic disease in later life, for which is 307 
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independent of their mother’s body weight. Current evidences further indicate that 308 

obesity and its related metabolic comorbidities inherited across generations through 309 

non-genetic mechanisms are dependent on the epigenetic modification in gametes 310 

(Öst et al. 2014, Grandjean et al. 2015, Terashima et al. 2015, Soubry et al. 2016, Hur 311 

et al. 2017). Thus, it is believed that epigenetic modifications in sperm can be 312 

influenced by obesity and inherited trans-generation, although the research about 313 

obesity related epigenetic modifications in sperm are few concerned on. 314 

As known, methylation of DNA and acetylation of histones are dynamic 315 

phenomena during spermatogenesis, by which is vital for the normal processes of 316 

spermatogenesis and fundamental for a successful pregnancy. DNA methylation is the 317 

reversible and heritable attachment of a methyl group to a nucleotide. The most 318 

common form of DNA methylation occurs at the 5´ carbon of cytosine in CpG 319 

dinucleotides, creating 5-methylcytosine. DNA methylation in sperm is associated 320 

with acetylation of histones, resulting in its replacement by protamines (Delaval et al. 321 

2007). In particular, DNA methylation in spermatozoa displays two statuses, in which 322 

are either closed to no methylation or very high methylation, and methylated CpGs 323 

are almost exclusively found in protamine-associated DNA (Hammoud et al. 2009, 324 

Donkin et al. 2016). However, the extent of histone replacement and DNA 325 

methylation in sperm varies widely on a species-specific basis. A genome wide study 326 

reports that 9081 unique genes in sperm are differentially methylated between obese 327 

men and normal lean men, which are enrichment for the term “nervous system 328 

development” (Donkin et al. 2016). Additionally, in high fat diet induced obesity rat 329 

Page 16 of 38



model, numerous differentially methylated regions corresponding to 92 genes 330 

involved in cellular localization, transport, and metabolic processes are identified in 331 

the spermatozoa and some differentially methylated regions are inherited 332 

trans-generation (de Castro Barbosa et al. 2015). The methylation of DNA in sperm is 333 

susceptible to environmental factors that might result in methylation status changes.  334 

Furthermore, the presence of non-coding RNA in sperm from many species may 335 

have post-fertilization functions including transmission of acquired characteristics 336 

(Miller & Ostermeier 2006, Sendler et al. 2013, Gapp et al. 2014). The non-coding 337 

RNA in sperm contains ribosomal RNA (rRNA), microRNAs (miRNA), 338 

PIWI-interacting RNAs (piRNA), small nucleolar RNA (snoRNA), small nuclear 339 

RNA (snRNA) and tRNA-derived fragments (tRFs). Analysis of the non-coding RNA 340 

content in sperm from either human or rat model reveals that the expression levels of 341 

several miRNAs, piRNAs, tRFs, and snRNA fragments were altered in the 342 

spermatozoa from obese males (de Castro Barbosa et al. 2015, Donkin et al. 2016). 343 

Some of the differential expressed piRNA are speculated to modulate the expression 344 

of genes involved in behavior and food intake and may participate in their offspring’s 345 

predisposition to obesity (Donkin et al. 2016). On the other hand, the altered miRNA 346 

let-7c expression in sperm concurs that in adipose tissue from the offspring, 347 

suggesting the transgenerational inheritance of metabolic dysfunction sired by obese 348 

fathers (de Castro Barbosa et al. 2015, Chen et al. 2016). Therefore, epigenetics may 349 

provide a key for elucidation of the intergenerational influences on obesity. 350 

 351 
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In addition to the adverse effects induced by obesity on male sperm epigenetic 352 

modification, there are several evidences suggested that some other negative impacts 353 

may be transmitted to the offspring (de Castro Barbosa et al. 2015, Fullston et al. 354 

2015, Chen et al. 2016, Chowdhury et al. 2016, Hur et al. 2017, Lecomte et al. 2017). 355 

For instance, epidemiologic evidences showed that environmental challenges imposed 356 

on the father, such as stress, specific diets, toxins, tobacco smoking and alcohol 357 

consumption, have been found to influence the development of the offspring via the 358 

non-genetic alterations within sperm including small non-coding RNAs, DNA damage, 359 

DNA methylation and histone modifications (Chen et al. 2016, Rando 2016, 360 

Schagdarsurengin & Steger 2016, Fullston et al. 2017).  361 

 362 

Conclusion 363 

In summary, it gradually unveils a fact that male obesity has negative impacts on 364 

fertility, sperm function and on the health of the offspring for a long-term. Male 365 

obesity alters the environment essential for spermatogenesis and sperm maturation, 366 

including hypothalamic pituitary gonadal (HPG) axis related sexual hormone 367 

imbalance, increased scrotal temperature, induced chronic inflammation and oxidative 368 

stress in testis and epididymis, and declined Sertoli cell activity. The impaired 369 

spermatogenesis and sperm maturation can further cause poor sperm quality, 370 

including declined sperm motility, inappropriate lipid composition, increased ROS 371 

and DNA damage, and abnormal epigenetic modification that may be 372 

transgenerational transmitted, finally leading to male subfertility or infertility indeed 373 
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(Fig. 1).  374 

Nevertheless, the mechanisms of obesity that impacts on male reproduction 375 

remain somewhat unclear and still need to be further investigated although the 376 

molecular alterations associated with obesity have been generally reported (Craig et al. 377 

2017, Oliveira et al. 2017). For instance, among the multiple factors relevant to male 378 

subfertility associated with obesity, inflammation in reproductive system is one of 379 

what have been overlooked in previous studies. Obesity related chronic inflammation 380 

is considered to raise the risk of cardiovascular disease, tumorigenesis, diabetes and 381 

etc., which means that the systematic chronic inflammation alters the individual 382 

homeostasis. Particularly in reproductive system that is essential for spermatogenesis 383 

and sperm maturation, chronic inflammation can affect the sperm fertilizing capability 384 

as well as the sperm epigenome. Thus, the inflammatory indicators in semen could 385 

potentially be a useful evaluation standard for sperm quality and are worthy of 386 

in-depth exploring. Meanwhile, the sperm epigenetic alterations induced by obesity 387 

will pass on to the subsequent generation and may result in the metabolic changes in 388 

the offspring even in the grand-offspring. Therefore, it is crucial to understand the 389 

changes of key epigenetic signatures in sperm induced by obesity and the 390 

transmission of these fingerprints across generations. Besides, based on the 391 

mechanism of epigenetic alteration and inheritance occurring in male obesity, it may 392 

be easier to explore the phenotypic inheritance in other types of environmental or 393 

health challenges, such as smoking, aging, nervousness and toxin.  394 

 395 
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Figure legend 

 

Figure 1 

Effects of obesity on male fertility. Male obesity can lead to hypothalamic pituitary gonadal (HPG) 

axis related hormone imbalance, induce chronic inflammation and enhance oxidative stress at both 

systemic and tissular levels. Therefore, the environment which is essential for spermatogenesis in 

testis and sperm maturation in epididymis such as Sertoli cell activity, BTB integrity and epididymal 

epithelium activity is gradually impaired by hormone deficiency, inflammation and oxidative attack. 

Then, the impaired spermatogenesis and sperm maturation can cause poor sperm quality, including 

declined sperm concentration and motility, inappropriate lipid composition, increased DNA damage 

and abnormal epigenetic modification, finally leading to male subfertility and health problems that 

may be transmitted to the offspring via epigenetic inheritance. 
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Figure 1 Effects of obesity on male fertility. Male obesity can lead to hypothalamic pituitary gonadal (HPG) 
axis related hormone imbalance, induce chronic inflammation and enhance oxidative stress at both systemic 
and tissular levels. Therefore, the environment which is essential for spermatogenesis in testis and sperm 

maturation in epididymis such as Sertoli cell activity, BTB integrity and epididymal epithelium activity is 
gradually impaired by hormone deficiency, inflammation and oxidative attack. Then, the impaired 
spermatogenesis and sperm maturation can cause poor sperm quality, including declined sperm 

concentration and motility, inappropriate lipid composition, increased DNA damage and abnormal epigenetic 
modification, finally leading to male subfertility and health problems that may be transmitted to the 

offspring via epigenetic inheritance.  
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