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Abstract: Substantial improvements in cancer treatment have resulted in longer survival and
increased quality of life in cancer survivors with minimized long-term toxicity. However, infertility
and gonadal dysfunction continue to be recognized as adverse effects of anticancer therapy.
In particular, alkylating agents and irradiation induce testicular damage that results in prolonged
azoospermia. Although damage to and recovery of spermatogenesis after cancer treatment have
been extensively studied, there is little information regarding the role of differences in testicular
immunology in cancer treatment-induced male infertility. In this review, we briefly summarize
available rodent and human data on immunological differences in chemotherapy or radiotherapy.
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1. Introduction and Immunological Tolerance of the Testis

The testis is an immune-privileged site at which immunogenic germ cells are protected from
the detrimental effects of immune responses. The most commonly recognized mechanism for the
immunological privilege is the blood–testis barrier (BTB), physically formed by the borders of adjacent
Sertoli cells, limiting the access of germ cell antigens to interstitial immune cells and the passage
of antibodies from the interstitium to the tubular lumen. Immunological privilege outside the BTB
involves secretion of immunosuppressive factors mainly by macrophages, Sertoli cells, peritubular
cells, and Leydig cells [1–5] (Table 1).

The testicular capacity to inhibit local immune responses has been confirmed in many
studies; however, the mechanisms through which immune-privilege contributes to protection of
spermatogenesis, a highly specialized process, have not been clearly defined. Elevated levels of
intratesticular testosterone and/or progesterone may cause inhibition of local immune responses [6].
However, the testes contain high levels of steroidal molecules that are immunosuppressive by nature [7].
The expression of functional FasL by Sertoli cells [8] and/or by germ cells [9] as an active mechanism
induces cell death via apoptosis, such as activated T cells in inflammation [10,11]. Furthermore,
various anti-inflammatory cytokines, such as interleukin-10, are abundantly produced by testicular
cells, particularly testicular macrophages [12], and members of the transforming growth factor-β family
are highly expressed by Leydig and Sertoli cells [13]. The immune environment in the testes must be
tightly controlled to maintain immune homeostasis for normal spermatogenesis. Disruption of immune
homeostasis may result in autoimmune or infectious aspermatogenesis, thereby impairing testicular
function. The mechanisms underlying the autoimmune inflammatory response and the mechanisms of
orchitis have been broadly investigated and comprehensively reviewed in rats and mice [14–16].
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Table 1. Testicular immune factors in normal and cancer-treated mice.

Immunosuppressive Factors
in Normal Testis Local Function

Testicular Immunology
Consequences after
Busulfan-Treatment

Testicular Immunology
Consequences after

Irradiation-Treatment

Testicular Immunology
Consequences in

Autoimmune Orchitis

Germ cells transforming growth factor β Leydig cell steroidogenesis ↓
Fas ligand apoptosis of Fas-bearing lymphocyte ↑ or (-)

interferon-γ Leydig cell steroidogenesis ↓
tumor necrosis factor α Leydig cell steroidogenesis ↓ or ↑

Fas ↑ caspase3-8 ↑ Fas ↑ caspase 3–8 ↑
Fas ↑ apoptosis through oxidative stress Bax ↑ caspase 9 ↑

p53-ROS ↑ caspase3 ↑ DNA damage

Sertoli cells activin mitogenesis of lymphocytes ↓
inhibin mitogenesis of lymphocytes ↑

interleukin-6 meiotic DNA synthesis of germ cell ↑ ? ↑
Fas ligand apoptosis of Fas-bearing lymphocyte

transforming growth factor β inhibin secretion ↑
TNFα↑MCP-1 ↑ TLR2,4 ↑ ZO-1, occludin, claudin-11 ↓ occludin, claudin-11 ↓

Sat2 ↑
Leydig cells testosterone ↓ ↓ ↓

protein S Leydig cell steroidogenesis ↓
insulin-like growth factor-1 testosterone secretion ↑

Fas ligand apoptosis of Fas-bearing germ cell
interleukin-10 immune privilege

transforming growth factor β contractility of myoid cell
Leydig cell apoptosis

Testicular interleukin-10 inhibition of T cell-mediated immune response response
macrophages interferon-γ Fas ligand expression by Sertoli cell ↑ ↑

interleukin-6 radioprotection of germ cell by Sertoli cell ↑ ? ↑
tumor necrosis factor α Fas ligand expression by Sertoli cell ↓ or ↑ ↑ ↑

macrophage infiltration (+) macrophage infiltration (-) macrophage infiltration (+)

Others
ASA? ASA (+)

T cells·B cells infiltration (+)
ASA (+)

↑ indicated increase and ↓ indicated decrease; ? indicated different opinion.
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The growing population of young cancer survivors and the trend toward postponing pregnancy
until later in life have shifted researchers’ focus toward understanding treatment-induced sequelae,
particularly the effects of cancer and/or treatment on fertility [17]. Although prepubertal testes do
not undergo spermatogenesis and do not produce mature spermatozoa, the testes are sensitive to
cytotoxic drugs and irradiation at this age. Testicular damage is drug specific and dose related, and the
recovery of spermatogenesis varies following cytotoxic insults; additionally, the extent and speed of
recovery are related to the agent used and the dose received [18–21]. Radiotherapy-induced testicular
damage is similarly dose dependent, with speed of onset, chance of reversal, and time to recovery of
spermatogenesis all related to the testicular dose of irradiation [17,22].

In this review, we aimed to outline immunological differences in cancer treatment-induced male
infertility. Knowledge of this immunopathologic microenvironment will be useful to understand
infertility and gonadal dysfunction as adverse effects of anticancer therapy.

2. Chemotherapy

Many drugs, particularly alkylating agents, have been shown to be gonadotoxic. Indeed, some
chemotherapies used in the treatment of lymphoma or in preparation for bone transplantation have
been shown to cause azoospermia, with feedback-raised follicle-stimulating hormone (FSH) levels in
over 90% of men following cyclical chemotherapy [22,23].

Busulfan is a chemotherapeutic agent that is used to treat various malignant diseases, such as
chronic myeloid leukemia and polycythemia vera [24,25]. Additionally, busulfan is also commonly
used prior to hematopoietic stem cell transplantation [24]. Unlike other chemicals that destroy
differentiated spermatogonia, busulfan is a potent agent that preferentially kills spermatogonial
stem cells [26] and does not have any effect on DNA synthesis. Consequently, busulfan treatment is the
most common method used to prepare recipients of spermatogonial stem cells transplantation [27,28]
and to study spermatogonial stem cells kinetics and fertility recovery [29–31]. Busulfan can eliminate
almost all endogenous germ cells in the recipient, creating an empty space in the spermatogonial
stem cells niche; therefore, this drug has been used successfully to prepare recipients in mice [32,33],
rats [34,35], pigs [36,37], dogs [38], hamsters [39], monkeys [40], and roosters [41].

Busulfan treatment has been shown to disrupt spermatogenesis by damaging germ cells and
Sertoli cells [42,43]. Although busulfan has been extensively studied regarding to induction of testicular
damage through various cellular and molecular mechanisms, the effects of treatment on testicular
immunology have not been thoroughly evaluated (Table 1). Choi et al. showed that busulfan may
induce germ cell apoptosis through loss of c-kit signaling in a Fas/FasL- and p53-independent manner
in 8–12-week-old mice [44]. Moreover, using the same adult mice, Li et al. demonstrated that p53 is a
key protein with roles in busulfan-induced apoptosis through reactive oxygen species (ROS)-dependent
activation of the extracellular signal-regulated kinase/p38 pathway, and decreased concentrations of
deacetylated p53 result in spermatogonial cell resistance to apoptosis [45]. Xian et al. showed that
spermidine/spermine N1-acetyltransferase 2 (Sat2) is present in adult mice testicular Sertoli cells and
that its expression is significantly increased by busulfan treatment. Furthermore, upregulation of Sat2
by busulfan alters the growth and function of Sertoli cells and causes male infertility [46]. Zhang et al.
demonstrated that busulfan-induced spermatogenic cell damage upregulates tumor necrosis factor
(TNF) α and macrophage chemotactic protein (MCP) 1 expression in Sertoli cells and facilitates
macrophage infiltration into the testes of 8–10 weeks age mice [47]. Additionally, damaged germ
cells in busulfan-treated mice release endogenous Toll-like receptor (TLR) ligands to activate TLR2
and TLR4 in Sertoli cells, thus initiating endogenous inflammation in the testes [47,48]. Activation of
TLRs induces inflammatory gene expression, which may facilitate injury repair and lead to further
pathological conditions, such as autoimmune diseases [49–51].

Taken together, these studies suggested that the key factors mediating testicular immunology
in busulfan-induced aspermatogenesis are Sertoli cells and macrophages, being similar with that in
autoimmune orchitis excluding inflammatory reactions (Table 1, Figure 1).
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Sinisi et al. investigated the occurrence of antisperm antibody (ASA) in 264 prepubertal male
boys (ages 1.2–13 years) treated with chemotherapy and confirmed that 26 of these patients were
ASA-positive [52]. Moreover, of the 26 ASA-positive boys, 24 had genital tract abnormalities,
such as cryptorchidism, testicular torsion, and hypospadias, and two had leukemia with testicular
infiltration [52]. Therefore, these findings suggested that chemotherapy did not modify antibody
positivity. Only one experiment showed that remaining spermatogonia after 40 mg busulfan-treatment
reacted strongly to IgG antibodies and that serum IgG levels increased in a manner corresponding with
the increase in testicular IgG levels in adult (8–12-week-old) ICR mice [53]. Researchers demonstrated
that serum IgG increased from 4 weeks after busulfan treatment, peaked at 7 weeks, and dropped
rapidly to control concentrations after 8 weeks. In contrast, the testicular levels of IgG showed a gradual
increase that accelerated after 3 weeks and peaked at 6 weeks, before dropping to control serum levels at
8 weeks. In our previous busulfan study in 4-week-old C57BL/6 mice, we examined serum anti-germ
cell antibodies in 40 mg busulfan-treated mice and demonstrated that no anti-germ cell antibody
production could be detected at 60 days after busulfan treatment (according to immunohistochemistry
using serum samples and anti-mouse IgG) [48]. Moreover, we demonstrated that busulfan treatment
progressively decreased the weight of the testes and the epididymal sperm count from day 60 to 120
and that 40 mg busulfan-induced aspermatogenesis was irreversible for at least 360 days [48,54,55].
We surmised that the primary cause of this aspermatogenesis involved factors other than ASA.
We also showed that normalized macrophage migration and reduced expression of TLR2 and TLR4
after busulfan treatment could completely rescue the injured seminiferous epithelium and alleviate
aspermatogenesis [48]. These differences may be related to the different experimental periods because
it is well known that the infertility after busulfan is in a time- and dose-dependent manner, and is also
possibly related with different species or ages of mice.

3. Radiotherapy

Irradiation has been shown to decrease spermatogenesis, alter the production of various hormones,
and induce infertility. In both rodents and humans, the extent of testicular injury is directly
related to the dose of irradiation delivered [56,57], and the germinal epithelium is very sensitive
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to radiation-induced damage [58], with changes in spermatogonia following doses as low as 0.1 Gy
and permanent infertility after fractionated doses of 2 Gy and above [59].

Damage may be caused during direct irradiation of the testes or from scattered radiation during
treatment directed at adjacent tissues. No recovery of spermatognesis was observed in 10 patients,
mean age 32.9 years (range 24–40), receiving doses of 1.4–2.6 Gy after 17–43 months follow-up;
however, recovery of fertility was observed in two patients with testicular radiation doses of 1.2 Gy
and recovery of spermatogenesis was observed in all eight patients who received radiation doses of
0.28–0.9 Gy for testicular seminoma [60]. In postpubertal men, testicular doses of less than 0.2 Gy
have no significant effect on FSH levels or sperm counts, whereas doses between 0.2 and 0.7 Gy cause
transient dose-dependent increases in FSH and a reduction in sperm concentrations [61]. Notably, total
body irradiation (TBI), used for bone marrow transplantation, is associated with appreciable gonadal
toxicity, and previous studies have shown that 99.5% of men (mean age 31 years ranging from 11-
to 62-years-old) who received 12.0 Gy TBI showed permanent infertility [23]. Moreover, TBI doses
as low as 5–6 Gy could cause decreased spermatogenesis in the seminiferous tubules in prepubertal
mice [62,63].

The deleterious effects of irradiation in biological systems are mainly mediated through the
generation of ROS and cause lipid peroxidation in the cellular membrane, thereby inducing DNA
damage in immature germ cells [64,65]. DNA damage caused by irradiation in premeiotic germ cells is
detectable in primary spermatocytes and is still present in mature spermatozoa [64,66]. Furthermore,
apoptosis of germ cells has been reported as a mechanism responsible for infertility in irradiated
testes [67,68]. Some studies have indicated that irradiation-mediated oxidative stress induces apoptosis
primarily in adult mouse and rat germ cells [69–72]. Additionally, irradiation-induced germ cell
apoptosis depends on activation of caspase-3 in three-month-old rats [72], concomitant with increased
expression of caspase-8 and decreased expression of caspase-9 in adult rats and prepubertal mice,
respectively [72,73] (Table 1, Figure 1). However, irradiation-induced apoptosis does not occur in
all types of testicular somatic cells. Some studies have shown that Sertoli cells and Leydig cells are
resistant to irradiation-induced apoptosis [67,71,74–76], whereas some studies have described minimal
changes in Sertoli cells [77,78].

Sertoli cells, through formation of the BTB, protect postmeiotic germ cells from exogenous
toxicants introduced by testicular blood and lymph. Recently, some studies have demonstrated that
Sertoli cell junctional proteins are the primary cellular targets of reproductive toxicants, such as
cadmium chloride, dichlorodiphenyltrichloroethane, cisplatin, and bisphenol A [79–81]. In contrast,
some reports have shown irradiation-induced BTB disruption with a decrease in zonula occludens-1
(ZO-1), occludin, and/or claudin-11 [82–84]. The integral membrane proteins claudin-11 [85,86]
and occludin [87–89] and the adaptor protein ZO-1 [90,91], which all function in tight junctions, are
critical components of the BTB. In both prepubertal and adult claudin11-knockout mice, the lumen
of the seminiferous tubules are narrowed [92,93], round spermatids are the most mature germ cells,
and increased germ cell apoptosis is observed [93]. In occludin-knockout mice, the seminiferous
tubules are atrophied and have a Sertoli-cell-only phenotype at 40–60 weeks of age [94].

Breakdown of the BTB with its subsequent leukocytic infiltration of tubules can be found in human
biopsy specimens from cases of idiopathic infertility and in models of testicular inflammation [95–97]
(Table 1). An increase in BTB permeability is known to enhance ASA production, resulting in infertility
in males [85,86,98]. Recently, we reported that single-dose TBI induced ASA that preferentially reacted
with mature spermatids and spermatozoa in prepubertal mice [73]. Our results showed that 6 Gy of TBI
induced a disruption of spermatogenesis with a decrease in inter-Sertoli tight junction mRNA levels and
the production of ASA (Table 1). The contributions of claudin-11, occludin, and ZO-1 to BTB integrity
were further determined in TBI-induced aspermatogenesis, and recovery of spermatogenesis was
found to depend on the recovery of the above disorganized tight junctions. Furthermore, differences
in busulfan- and irradiation-induced aspermatogenesis and the treatment duration in response to
busulfan- and irradiation-induced aspermatogenesis were evaluated. Busulfan treatment in the same
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prepubertal mice was found to progressively decrease the weight of the testes and the epididymal
sperm count from day 30 to day 120 (Figure 2); whereas an administered an oriental medicine
completely rescued these effects on day 120 after busulfan treatment (testes weight: 0.100 ± 0.006 g;
epididymal spermaotzoa: (21.680 ± 1.700) × 105 cells) [48]. In contrast, irradiation treatment induced
significant decreases in the weights of the testes and epididymal sperm cell counts on day 30; marginal
recovery was observed from day 60 to day 120, but further decreases in all parameters were noted on
day 150 (Figure 2). Notably, supplementation with the above oriental medicine significantly restored
the epididymal spermatozoa count and fertility on day 150 but not day 120 [73]. This belated recovery
of spermatogenesis in the irradiated group compared with that in the busulfan-treated group suggested
that the presence of ASAs may be the other immunological cause of aspermatogenesis. Although no
leukocytic infiltration was detected in the irradiated testes, the breakdown of BTB and the immune
responses against the testicular autoantigen are similar to that in the orchitis testes (Table 1).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 11 

 

treatment duration in response to busulfan- and irradiation-induced aspermatogenesis were 
evaluated. Busulfan treatment in the same prepubertal mice was found to progressively decrease the 
weight of the testes and the epididymal sperm count from day 30 to day 120 (Figure 2); whereas an 
administered an oriental medicine completely rescued these effects on day 120 after busulfan 
treatment (testes weight: 0.100 ± 0.006 g; epididymal spermaotzoa: (21.680 ± 1.700) × 105 cells) [48]. In 
contrast, irradiation treatment induced significant decreases in the weights of the testes and 
epididymal sperm cell counts on day 30; marginal recovery was observed from day 60 to day 120, 
but further decreases in all parameters were noted on day 150 (Figure 2). Notably, supplementation 
with the above oriental medicine significantly restored the epididymal spermatozoa count and 
fertility on day 150 but not day 120 [73]. This belated recovery of spermatogenesis in the irradiated 
group compared with that in the busulfan-treated group suggested that the presence of ASAs may 
be the other immunological cause of aspermatogenesis. Although no leukocytic infiltration was 
detected in the irradiated testes, the breakdown of BTB and the immune responses against the 
testicular autoantigen are similar to that in the orchitis testes (Table 1). 

 
Figure 2. Testes weights and epididymal spermatozoa numbers in normal and busulfan-/irradiation-
treated mice. 

4. Conclusion 

From the above limited reported data, the impaired reproductive functions induced by cancer 
treatment including chemotherapy and radiotherapy are related with the different immune-
pathophysiological conditions. Especially, with the breakdown of BTB by irradiation, germ cell 
autoantigens inside BTB might leak out repeatedly, leading to a continuous supply of autoantigens 
for immune stimulation with resultant ASA production and prolongation of the testicular 
inflammation. It is well known that the mechanisms of immune privilege in male reproductive organs 
are still far from being completely understood. The mechanisms underlying the autoimmune 
inflammatory response and the mechanisms of orchitis have been broadly investigated and 
comprehensively reviewed in rodent and human. Although damage to and recovery of 
spermatogenesis after cancer treatment have been extensively studied, there is little information 
regarding the role of differences in testicular immunology in cancer treatment-induced male 
infertility. Presently, the information on therapy for cancer treatment-induced male infertility is also 
limited. Because treatment with cytotoxic chemotherapy and radiotherapy indicated the increased 
FSH levels and reduced sperm counts, the effects of suppression of testosterone and gonadotrophin 
analogs on stimulation of spermatogonial differentiation, resulting in spermatogenic progression 
after cancer treatment, have been well demonstrated [99,100]. However, hormone suppression has 

Figure 2. Testes weights and epididymal spermatozoa numbers in normal and busulfan-/irradiation-
treated mice.

4. Conclusion

From the above limited reported data, the impaired reproductive functions induced by
cancer treatment including chemotherapy and radiotherapy are related with the different
immune-pathophysiological conditions. Especially, with the breakdown of BTB by irradiation, germ
cell autoantigens inside BTB might leak out repeatedly, leading to a continuous supply of autoantigens
for immune stimulation with resultant ASA production and prolongation of the testicular inflammation.
It is well known that the mechanisms of immune privilege in male reproductive organs are still far
from being completely understood. The mechanisms underlying the autoimmune inflammatory
response and the mechanisms of orchitis have been broadly investigated and comprehensively
reviewed in rodent and human. Although damage to and recovery of spermatogenesis after cancer
treatment have been extensively studied, there is little information regarding the role of differences
in testicular immunology in cancer treatment-induced male infertility. Presently, the information
on therapy for cancer treatment-induced male infertility is also limited. Because treatment with
cytotoxic chemotherapy and radiotherapy indicated the increased FSH levels and reduced sperm
counts, the effects of suppression of testosterone and gonadotrophin analogs on stimulation of
spermatogonial differentiation, resulting in spermatogenic progression after cancer treatment, have
been well demonstrated [99,100]. However, hormone suppression has multiple side effects and
recovery occurs gradually, the application of hormone suppression treatments to enhance endogenous
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spermatogenic recovery has so far been successful in clinical trials [99]. Furthermore, chemotherapy
and radiotherapy are often used in combination associated with greater testicular dysfunction and
germinal epithelial damage. To lead to an availability of therapy on male infertility after cancer
treatment, elucidation of the immunological mechanisms underlying aspermatogenesis by cancer
treatment could be helpful.
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Abbreviations

ASA antisperm antibody
BTB blood–testis barrier
FSH follicle-stimulating hormone
MCP1 macrophage chemotactic protein 1
ROS reactive oxygen species
Sat2 spermidine/spermine N1-acetyltransferase 2
TBI total body irradiation
TLR Toll-like receptor
TNF tumor necrosis factor
ZO-1 zonula occludens-1
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