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For human IVF, the patient’s ovaries are hormonally stimulated to ensure the 
collection of fully matured oocytes that are at the metaphase II stage. Only 
these oocytes can be successfully fertilized either when mixed with sperm or 
after ICSI. Nevertheless, in some cases immature or maturing oocytes are 
recovered from follicles. Surprisingly, sometimes these oocytes do not 
complete maturation when cultured , for unknown reasons.
In this article we discuss some possible mechanisms that may be
responsible for those atypical arrests.
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Mammalian ovaries contain three basic populations of oocytes: (i) growing 
oocytes, which have not attained their full size and are unable to resume 
maturation when released from follicles and cultured ; (ii) medium-
sized oocytes that can resume maturation , although this process is not 
completed and oocytes are arrested in metaphase I (MI) stage; and (iii) fully 
grown oocytes that resume maturation in response to gonadotrophins or 
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when they are released from follicles and cultured . This process is 
completed after oocytes reach metaphase II (MII) stage. This is the only stage when oocytes, in most mammals,
can be successfully fertilized (Eppig, 1993 ; Fulka ., 1998 ). After oocytes begin to mature, their nuclei–
germinal vesicles (GV) break down and chromosomes condense (germinal vesicle breakdown, GVBD). 
Chromosomes are then arranged in MI stage which is followed by anaphase I to telophase I (A–TI) transition 
and oocytes are arrested in MII, ready for fertilization (Trounson ., 2001 ).

in vitro

 et al

 et al

The process of maturation is under control of maturation promoting factor (MPF). More simply, in immature 
oocytes, MPF is present in an inactive phosphorylated form as a complex of Cdk 1 and cyclin B. This 
phosphorylation is controlled by Myt 1 kinase. The dephosphorylation of MPF is induced by Cdc25 
phosphatase (probably by Cdc25B). The activity of MPF reaches its peak in MI and then decreases during the 
anaphase to telophase transition. Thereafter, high levels of MPF are again restored and oocytes are kept at this 
stage under the influence of a cytostatic factor (CSF) (Smith, 2001 ). MPF is fully degraded when oocytes
are fertilized or parthenogenetically activated (Nebreda and Ferby, 2000 ; Tunquist and Maller, 2003 ). The 
process of maturation, however, is much more complex and not yet fully understood (Eichenlaub-Ritter and 
Peschke, 2002 ). In somatic cells, the transition from one stage to another one is perfectly controlled by so-
called checkpoint controls. It is unclear whether equivalent control mechanisms also exist in mammalian 
oocytes (LeMaire-Adkins ., 1997 ; Yin ., 1998 ; Fulka ., 2000 ). In general, we may
suppose that the same, or similar, cell cycle control mechanisms regulate maturation of human oocytes 
(Yamashita ., 2000 ).

 et al  et al  et al

 et al

 
Naturally, fully grown mammalian oocytes are arrested at two points of 
maturation. The first point of arrest is at GV stage when oocytes are awaiting 
the gonadotrophin signal or the release from an inhibitory follicular 
environment. The second point is at MII stage when oocytes are waiting for 
fertilization (Russell, 2001 ). In some recently published papers, certain 
atypical situations in human oocytes, which are not easy to explain, have 
been described (Bergere ., 2001 ; Levran ., 2002 ; Neal ., 
2002 ; Schmiady and Neizel, 2002 ). Thus, oocytes from some patients were collected at GV stage and did 
not resume meiosis when cultured . In some other cases, oocytes were collected in MI and were unable 
to complete meiosis up to MII. Moreover, in some patients, oocytes did not respond properly to
fertilizing sperm. For our debate article we have selected some recently published results describing the 
analogical situations in oocytes from experimental animals, namely the mouse. We do believe that these data 
may, at least partially, shed some light on the meiotic arrest problem in assisted human reproduction.

  Maturation arrests in human oocytes

 et al  et al  et al
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As mentioned above, those oocytes not attaining their full size are unable to 
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undergo GVBD and remain arrested at this stage or eventually they may 
mature only to MI. In pig and cattle, the ability to initiate maturation is 
related to the follicle size from which the oocyte is collected (Motlik and 
Fulka, 1986 ). It cannot be supposed that for human IVF the oocytes are 
isolated from such small follicles. However, it remains a question if, in some 
rare cases, the follicular growth is not accompanied with relevant oocyte 
growth. Thus the follicle would attain the appropriate size at the time of aspiration whilst the oocyte is still 
slightly developmentally behind. It has been shown that chromatin configurations differ in immature human 
oocytes collected from large antral oocytes. It is assumed that only those oocytes in which the nucleolus is 
surrounded with a ring of condensed chromatin mature better and are more developmentally competent after 
fertilization (Wickramasinghe and Albertini, 1993 ; Combelles ., 2002 ; Miyara ., 2003a ). It
has been proposed that the artificial GV stage arrest may permit the oocyte to reach a more advanced 
developmental stage and thus to increase the competence of oocytes to mature and develop better after 
fertilization. In humans, the prolonged GV stage arrest, when oocytes are incubated in medium with 
phosphodiesterase type 3 inhibitor, does not enhance their maturation competence (Nogueira ., 2003 ).

 et al  et al

 et al

Levran . (2002 ), however, reported that the inability of oocytes to mature was observed repeatedly, thus 
we may rather suppose some rare heritable molecular defects that are responsible for the inability of these 
oocytes to initiate the activation of MPF. It is impossible to define these defects precisely but a recent paper by 
Lincoln . (2002 ) showed that this possibility may theoretically exist. These authors generated Cdc25B

mice and found that oocytes from these females were ovulated at GV stage and when further cultured 
 were unable to undergo GVBD and remained GV stage-arrested. The wildtype Cdc25B mRNA 

microinjection into these oocytes triggers the resumption of meiosis. The possible treatment for the patient 
described in Levran’s paper would be, theoretically, the transfer of GV from a patient’s oocytes into a donor’s 
enucleated oocytes (Fulka ., 2002 ; Palermo ., 2002 ), with their subsequent maturation and IVF 
(ICSI).

 et al

 et al –

/– in
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 et al  et al

 
In the second group of patients, oocytes were collected in MI stage and, 
when cultured , they were unable to reach MII. Here, at least three 
possible explanations could be offered. First, when collected, oocytes still 
did not attain the full competence to mature. Second, this arrest may result 
from the absence of meiotic recombination, which, under normal
conditions, occurs in pachytene stage. For example, as demonstrated
in the mouse, the targeted disruption of the DNA mismatch
repair genes  or , which results in the absence of MLH 1 (MLH 3) proteins, sharply reduces the 
meiotic recombination and maturing oocytes are arrested in MI-like stage (Woods ., 1999 ; Lipkin ., 
2002 ). A similar defect can be observed in the absence of Spo 11p (Lichten, 2001 ), and also the mouse 
meiotic mutation  disrupts chromosome synapsis and oocytes are arrested in MI stage (Libby ., 2002
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). This clearly indicates the necessity of meiotic recombination for the final phases of oocyte maturation. The 
third possibility may be in an inability of oocytes to produce the key cell cycle regulating factors. Spruck . 
(2003 ) demonstrated in the mouse that the lack of Cks 2 results in the production of oocytes unable to pass 
the first meiotic metaphase. Hampl and Eppig (1995 ) reported that oocytes from LT/Sv mice do not progress 
beyond MI. They showed that in these oocytes the natural degradation of p34  and cyclin B, which is 
typical for the normal transition from MI to AI, did not occur. That protein kinase C (PKC) may be among the 
participating factors regulating this transition has been shown by Viveiros . (2001 ). Certainly some other 
factors, namely those which are responsible for a correct spindle function, play a crucial role in the transition 
either from MI or MII (Kubiak ., 1993 ; Brunet ., 1999 ; Petronczki ., 2003 ).
Microfilaments also play an important role because they can influence the migration of spindle to the oocyte 
periphery. If inhibited, for example when oocytes are incubated in medium with high concentrations of 
cytochalasin D or in the absence of  gene, oocytes are arrested in MI. Interestingly, these oocytes can 
be fertilized but embryos generated from them are polyploid (Soewarto ., 1995 ; Leader ., 2002 ).

 et al

cdc2

et al

 et al  et al  et al

Formin-2
 et al  et al

 
With respect to Levran . (2002 ), cases 6, 7 and 8 are very difficult to 
explain. In case 6, oocytes were collected in MII stage and after ICSI two 
pronuclei were detected in them but no extrusion of the second polar body. 
This may indicate some MII spindle abnormalities as there is a very high 
probability that the separation of individual chromatids occurred as a 
consequence of oocyte activation. Typically, if this does not occur,
the oocyte is not properly activated (Fulka ., 1994 ). This may be the 
explanation for case 7, where oocytes remained in MII stage after ICSI, but the absence of some essential
cell cycle molecules which are involved in the regulation of a proper response after activation cannot be ruled 
out. The failure of oocyte activation prevents the formation of both pronuclei. Thus, MII is preserved and the 
sperm head chromatin does not undergo the decondensation. Instead, the individualization of paternal 
chromatin and the formation of the sperm head chromosome group can be detected (Flaherty ., 1995 ; 
Schmiady ., 1996 ; Rosenbusch, 2003 ). This phenomenon is named ‘sperm premature chromosome 
condensation (PCC)’. The detailed analysis of human MII oocytes after IVF failure indicates that the 
morphology of spindles was rather abnormal in almost all cells and this results in the failure of normal 
fertilization (Miyara ., 2003b ). Case 8 has MII oocytes that either did not extrude the second polar bodies 
or contained multiple pronuclei. The absence of second polar bodies may be theoretically explained as a 
consequence of ageing. In aged oocytes the metaphase spindle is not located on the periphery and moves to the 
oocyte centre. When these oocytes are parthenogenetically activated, they either cleave to 2-cell-like stage 
(immediate cleavage) or contain two pronuclei. The polynucleated fertilization with second polar bodies may 
be indicative of certain spindle defects. That situation resembles the observations made by Simerly . (2003

) when they tried to produce primate clones. The absence of two essential spindle proteins (NuMA and 
HSET), which were removed when the cytoplast was prepared, resulted, after nucleus transfer, in abnormal 
embryonic divisions.

  Metaphase II arrest and abnormal situations after fertilization
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It is possible that levels of the above or similar proteins were reduced and that this resulted in an abnormal 
separation of maternal chromosomes in MII. Even if we accept that the first meiotic division differs from the 
second one, the consequences of non-extrusion of polar bodies are basically the same and result in 
chromosomally abnormal oocytes (Soewarto ., 1995 ). Moreover, all the above cases are very difficult to 
explain. For example, if we accept that some spindle defects may be responsible, it is then not easy to 
understand how oocytes reached the MII. This indicates the absence of cell cycle checkpoint controls, but we 
rather suggest that there is a high probability that in some patients, oocytes are deficient in some key cell
cycle regulating molecules (Schmiady and Neitzel, 2002 ).

 et al

 
Maturation arrest in human oocytes as a cause of infertility has been 
discussed in some recently published papers. With the exception of oocytes 
from LT/Sv mice (Hampl and Eppig, 1995 ), this phenomenon has not been 
described in oocytes from any other mammalian species. We have listed 
some examples that are known from animal experiments and that result in a 
meiotic arrest at different stages of oocyte maturation. It has not 
been our intention to present a complete review and account of 
all papers covering this problem. Moreover, the arrest may be detected not only when oocytes mature but it 
may occur even after they are successfully fertilized (Balczon ., 2002 ; Wu ., 2003 ). We intend that 
our paper should open a further discussion on this topic and will demonstrate to clinicians that this problem is 
well known and complex. Neither was it our intention to indicate in detail the possible approaches which may 
solve at least some of the complications described (i.e. cytoplasmic transfer, germinal vesicle replacement, 
metaphase spindle transfer). When these approaches are eventually used, new issues like the 
‘heteroplasmy’ and ‘epigenetic modifications’ must be considered (De Rycke ., 2002 ; Hawes ., 2002

; St John, 2002 ).

  Conclusion
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